Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020857572> ?p ?o ?g. }
- W2020857572 endingPage "6239" @default.
- W2020857572 startingPage "6213" @default.
- W2020857572 abstract "Abstract. New pathways to form secondary organic aerosol (SOA) have been postulated recently. Glyoxal, the smallest dicarbonyl, is one of the proposed precursors. It has both anthropogenic and biogenic sources, and readily partitions into the aqueous phase of cloud droplets and deliquesced particles where it undergoes both reversible and irreversible chemistry. In this work we extend the regional scale chemistry transport model WRF-Chem to include detailed gas-phase chemistry of glyoxal formation as well as a state-of-the-science module describing its partitioning and reactions in the aerosol aqueous-phase. A comparison of several proposed mechanisms is performed to quantify the relative importance of different formation pathways and their regional variability. The CARES/CalNex campaigns over California in summer 2010 are used as case studies to evaluate the model against observations. A month-long simulation over the continental United States (US) enables us to extend our results to the continental scale. In all simulations over California, the Los Angeles (LA) basin was found to be the hot spot for SOA formation from glyoxal, which contributes between 1% and 15% of the model SOA depending on the mechanism used. Our results indicate that a mechanism based only on a reactive (surface limited) uptake coefficient leads to higher SOA yields from glyoxal compared to a more detailed description that considers aerosol phase state and chemical composition. In the more detailed simulations, surface uptake is found to give the highest SOA mass yields compared to a volume process and reversible formation. We find that the yields of the latter are limited by the availability of glyoxal in aerosol water, which is in turn controlled by an increase in the Henry's law constant depending on salt concentrations (salting-in). A time dependence in this increase prevents substantial partitioning of glyoxal into aerosol water at high salt concentrations. If this limitation is removed, volume pathways contribute > 20% of glyoxal-SOA mass, and the total mass formed (5.8% of total SOA in the LA basin) is about a third of the simple uptake coefficient formulation without consideration of aerosol phase state and composition. Results from the continental US simulation reveal the much larger potential to form glyoxal-SOA over the eastern continental US. Interestingly, the low concentrations of glyoxal-SOA over the western continental US are not due to the lack of a potential to form glyoxal-SOA here. Rather these small glyoxal-SOA concentrations reflect dry conditions and high salt concentrations, and the potential to form SOA mass here will strongly depend on the water associated with particles." @default.
- W2020857572 created "2016-06-24" @default.
- W2020857572 creator A5000365072 @default.
- W2020857572 creator A5018521569 @default.
- W2020857572 creator A5028881440 @default.
- W2020857572 creator A5029691962 @default.
- W2020857572 creator A5033746678 @default.
- W2020857572 creator A5040923799 @default.
- W2020857572 creator A5041560390 @default.
- W2020857572 creator A5055233190 @default.
- W2020857572 creator A5056048255 @default.
- W2020857572 creator A5056263999 @default.
- W2020857572 creator A5059671468 @default.
- W2020857572 creator A5063636063 @default.
- W2020857572 creator A5066552641 @default.
- W2020857572 creator A5074843395 @default.
- W2020857572 creator A5081595136 @default.
- W2020857572 creator A5082689496 @default.
- W2020857572 creator A5082854252 @default.
- W2020857572 creator A5085482013 @default.
- W2020857572 creator A5086290778 @default.
- W2020857572 creator A5088131620 @default.
- W2020857572 date "2014-06-24" @default.
- W2020857572 modified "2023-10-06" @default.
- W2020857572 title "Simulation of semi-explicit mechanisms of SOA formation from glyoxal in aerosol in a 3-D model" @default.
- W2020857572 cites W1485075767 @default.
- W2020857572 cites W1531108709 @default.
- W2020857572 cites W1555071841 @default.
- W2020857572 cites W1699067614 @default.
- W2020857572 cites W1842231561 @default.
- W2020857572 cites W1842649086 @default.
- W2020857572 cites W1870545057 @default.
- W2020857572 cites W1927555045 @default.
- W2020857572 cites W1966656069 @default.
- W2020857572 cites W1973383986 @default.
- W2020857572 cites W1973413336 @default.
- W2020857572 cites W1974993694 @default.
- W2020857572 cites W1985407072 @default.
- W2020857572 cites W1990671664 @default.
- W2020857572 cites W1991199950 @default.
- W2020857572 cites W1993322811 @default.
- W2020857572 cites W2002570697 @default.
- W2020857572 cites W2009134306 @default.
- W2020857572 cites W2034838692 @default.
- W2020857572 cites W2035618697 @default.
- W2020857572 cites W2043648557 @default.
- W2020857572 cites W2044055414 @default.
- W2020857572 cites W2048817008 @default.
- W2020857572 cites W2051349949 @default.
- W2020857572 cites W2057193010 @default.
- W2020857572 cites W2061512577 @default.
- W2020857572 cites W2071327121 @default.
- W2020857572 cites W2072410985 @default.
- W2020857572 cites W2072692927 @default.
- W2020857572 cites W2074274378 @default.
- W2020857572 cites W2074916216 @default.
- W2020857572 cites W2076335579 @default.
- W2020857572 cites W2082745110 @default.
- W2020857572 cites W2084152757 @default.
- W2020857572 cites W2089538061 @default.
- W2020857572 cites W2089663223 @default.
- W2020857572 cites W2092866358 @default.
- W2020857572 cites W2097806302 @default.
- W2020857572 cites W2099645645 @default.
- W2020857572 cites W2100790433 @default.
- W2020857572 cites W2102580742 @default.
- W2020857572 cites W2102708663 @default.
- W2020857572 cites W2103247239 @default.
- W2020857572 cites W2103541022 @default.
- W2020857572 cites W2103639584 @default.
- W2020857572 cites W2108412091 @default.
- W2020857572 cites W2109452501 @default.
- W2020857572 cites W2119961331 @default.
- W2020857572 cites W2121690346 @default.
- W2020857572 cites W2122054302 @default.
- W2020857572 cites W2123971863 @default.
- W2020857572 cites W2128079303 @default.
- W2020857572 cites W2131047786 @default.
- W2020857572 cites W2132185145 @default.
- W2020857572 cites W2135749962 @default.
- W2020857572 cites W2142378648 @default.
- W2020857572 cites W2142539879 @default.
- W2020857572 cites W2143422504 @default.
- W2020857572 cites W2144923127 @default.
- W2020857572 cites W2146794976 @default.
- W2020857572 cites W2151181273 @default.
- W2020857572 cites W2151958510 @default.
- W2020857572 cites W2156073332 @default.
- W2020857572 cites W2160722475 @default.
- W2020857572 cites W2161085315 @default.
- W2020857572 cites W2161495263 @default.
- W2020857572 cites W2170422277 @default.
- W2020857572 cites W2171810356 @default.
- W2020857572 cites W2324119029 @default.
- W2020857572 cites W2326664499 @default.
- W2020857572 doi "https://doi.org/10.5194/acp-14-6213-2014" @default.
- W2020857572 hasPublicationYear "2014" @default.
- W2020857572 type Work @default.