Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020858052> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2020858052 endingPage "91" @default.
- W2020858052 startingPage "80" @default.
- W2020858052 abstract "Shortest feature line segment (SFLS) is a recently proposed classification approach based on nearest feature line (NFL). It naturally inherits the representational capacity enlargement property of NFL and offers many other benefits in accuracy and efficiency. However, SFLS still has several drawbacks, limiting its generalization ability. In this paper, we develop a manifold learning algorithm for dimensionality reduction based on a novel line-based metric derived by integrating SFLS and NFL, which takes advantage of the benefits of the two algorithms and avoids their disadvantages. Unlike the construction of a point-based relationship in traditional dimensionality reduction algorithms, the new measurement forms linear models of multiple feature points, which capture more information than individual prototype and serve to discover the intrinsic connection of nearby points. Moreover, to enhance the discriminating capability, the affinity matrix in graph embedding is designed in supervised manner by using class label information. Experimental results on four standard databases for face recognition confirm the effectiveness of our proposed method." @default.
- W2020858052 created "2016-06-24" @default.
- W2020858052 creator A5007226593 @default.
- W2020858052 creator A5023796538 @default.
- W2020858052 creator A5085624118 @default.
- W2020858052 date "2013-06-01" @default.
- W2020858052 modified "2023-09-23" @default.
- W2020858052 title "Graph-preserving shortest feature line segment for dimensionality reduction" @default.
- W2020858052 cites W1930277388 @default.
- W2020858052 cites W2001141328 @default.
- W2020858052 cites W2001619934 @default.
- W2020858052 cites W2023820734 @default.
- W2020858052 cites W2033114537 @default.
- W2020858052 cites W2053186076 @default.
- W2020858052 cites W2083095455 @default.
- W2020858052 cites W2100281586 @default.
- W2020858052 cites W2123921160 @default.
- W2020858052 cites W2127409454 @default.
- W2020858052 cites W2135463994 @default.
- W2020858052 cites W2143071151 @default.
- W2020858052 cites W2143103810 @default.
- W2020858052 cites W2146076056 @default.
- W2020858052 cites W2146439239 @default.
- W2020858052 cites W2155759509 @default.
- W2020858052 cites W2159548580 @default.
- W2020858052 cites W2160054422 @default.
- W2020858052 cites W2163230565 @default.
- W2020858052 cites W2164071167 @default.
- W2020858052 cites W3148981562 @default.
- W2020858052 doi "https://doi.org/10.1016/j.neucom.2012.11.020" @default.
- W2020858052 hasPublicationYear "2013" @default.
- W2020858052 type Work @default.
- W2020858052 sameAs 2020858052 @default.
- W2020858052 citedByCount "2" @default.
- W2020858052 countsByYear W20208580522014 @default.
- W2020858052 countsByYear W20208580522023 @default.
- W2020858052 crossrefType "journal-article" @default.
- W2020858052 hasAuthorship W2020858052A5007226593 @default.
- W2020858052 hasAuthorship W2020858052A5023796538 @default.
- W2020858052 hasAuthorship W2020858052A5085624118 @default.
- W2020858052 hasConcept C114614502 @default.
- W2020858052 hasConcept C132525143 @default.
- W2020858052 hasConcept C138885662 @default.
- W2020858052 hasConcept C153180895 @default.
- W2020858052 hasConcept C154945302 @default.
- W2020858052 hasConcept C198352243 @default.
- W2020858052 hasConcept C2524010 @default.
- W2020858052 hasConcept C2776401178 @default.
- W2020858052 hasConcept C33923547 @default.
- W2020858052 hasConcept C41008148 @default.
- W2020858052 hasConcept C41895202 @default.
- W2020858052 hasConcept C70518039 @default.
- W2020858052 hasConcept C80444323 @default.
- W2020858052 hasConceptScore W2020858052C114614502 @default.
- W2020858052 hasConceptScore W2020858052C132525143 @default.
- W2020858052 hasConceptScore W2020858052C138885662 @default.
- W2020858052 hasConceptScore W2020858052C153180895 @default.
- W2020858052 hasConceptScore W2020858052C154945302 @default.
- W2020858052 hasConceptScore W2020858052C198352243 @default.
- W2020858052 hasConceptScore W2020858052C2524010 @default.
- W2020858052 hasConceptScore W2020858052C2776401178 @default.
- W2020858052 hasConceptScore W2020858052C33923547 @default.
- W2020858052 hasConceptScore W2020858052C41008148 @default.
- W2020858052 hasConceptScore W2020858052C41895202 @default.
- W2020858052 hasConceptScore W2020858052C70518039 @default.
- W2020858052 hasConceptScore W2020858052C80444323 @default.
- W2020858052 hasLocation W20208580521 @default.
- W2020858052 hasOpenAccess W2020858052 @default.
- W2020858052 hasPrimaryLocation W20208580521 @default.
- W2020858052 hasRelatedWork W2016461833 @default.
- W2020858052 hasRelatedWork W2066259560 @default.
- W2020858052 hasRelatedWork W2090269531 @default.
- W2020858052 hasRelatedWork W2339674921 @default.
- W2020858052 hasRelatedWork W2355203151 @default.
- W2020858052 hasRelatedWork W2382607599 @default.
- W2020858052 hasRelatedWork W2546942002 @default.
- W2020858052 hasRelatedWork W2883447302 @default.
- W2020858052 hasRelatedWork W3133411644 @default.
- W2020858052 hasRelatedWork W3211035526 @default.
- W2020858052 hasVolume "110" @default.
- W2020858052 isParatext "false" @default.
- W2020858052 isRetracted "false" @default.
- W2020858052 magId "2020858052" @default.
- W2020858052 workType "article" @default.