Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020880302> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2020880302 abstract "Abstract The objective of the investigation was to identify surface roughness after turning with wedges of coated sintered carbide. The investigation included predic ting the average surface roughness in the dry machining of Duplex Stainless Steel (DSS) and the determination of load curves together with roughness profiles for various cutting conditions. The load curves and roughness profiles for various cutting wedges and variable cutting parameters were compared. It has been shown that dry cutting leads to a decrease in friction for lubricated surfaces, providing a small initial contact area where the surface is contacted. The st udy has been performed within a production facility during the production of electric motor parts and deep-well pumps. Keywords: turning, coatings, friction-reducing, optical microscopy, surface roughness analysis and models. © 2014 Polish Academy of Sciences. All rights reserved 1. Introduction Engineering surfaces, particularly those generated using multi-step manufacturing processes and intended for tribological applications such as bearings and gears, rarely if ever have perfectly normal distributed elevations [1]. Surface roughness measurements of any workpiece are among the most important ones in length and angle metrology, both in theory and practice. According to Wieczorowski et al. [2], there are great discrepancies in these measurements because of the large variety of instruments for surface roughness analysis. Hence, three-dimensional surface topography parameters are necessary for assessing the surface roughness characteristics more effectively [3]. According to Mahovic Poljacek et al. [4], a precise characterization of roughness and surface topography is of prime importance in many engineering industries because certain functional properties of the materials are often determined by the surface structure and characteristics. Estimation of the magnitude of surface roughness under the given cutting conditions resulting from metal removal operations is one of the major goals in this area [5, 6]. According to Benardos and Vosniakos [7], surface roughness is a widely used index of product quality and in most cases a technical requirement for mechanical products. Achieving the desired surface quality is of great importance for the functional behaviour of a part. Surface profilometry is for many years a well-known method of topography inspection [8–12]. Topography parameters represent surface properties is much better than 2D ones. Using the surface parameters can be determined functions describing surface behaviour. The workpiece material is duplex stainless steel because this stainless steel is widely used for many industrial applications due to its unique properties. Cabrera et al. [13] and Park et al. [14] consider that the good combination of their mechanical properties (high strength and toughness) and corrosion resistance makes them of great interest for a wide range of" @default.
- W2020880302 created "2016-06-24" @default.
- W2020880302 creator A5014982020 @default.
- W2020880302 creator A5082416494 @default.
- W2020880302 date "2014-01-01" @default.
- W2020880302 modified "2023-10-16" @default.
- W2020880302 title "Experimental Analysis by Measurement of Surface Roughness Variations in Turning Process of Duplex Stainless Steel" @default.
- W2020880302 cites W179248629 @default.
- W2020880302 cites W1965966787 @default.
- W2020880302 cites W1967667832 @default.
- W2020880302 cites W1970206294 @default.
- W2020880302 cites W1971345602 @default.
- W2020880302 cites W1973877431 @default.
- W2020880302 cites W1989181372 @default.
- W2020880302 cites W2003636641 @default.
- W2020880302 cites W2011037009 @default.
- W2020880302 cites W2017907921 @default.
- W2020880302 cites W2020279674 @default.
- W2020880302 cites W2034991511 @default.
- W2020880302 cites W2040796428 @default.
- W2020880302 cites W2043314338 @default.
- W2020880302 cites W2044826853 @default.
- W2020880302 cites W2046149590 @default.
- W2020880302 cites W2059956675 @default.
- W2020880302 cites W2082875805 @default.
- W2020880302 cites W2083312793 @default.
- W2020880302 cites W2094315227 @default.
- W2020880302 cites W2121753122 @default.
- W2020880302 cites W2123776634 @default.
- W2020880302 cites W2149401096 @default.
- W2020880302 cites W2155994021 @default.
- W2020880302 cites W2167933630 @default.
- W2020880302 cites W2536851315 @default.
- W2020880302 cites W2622223782 @default.
- W2020880302 cites W53566782 @default.
- W2020880302 cites W942535084 @default.
- W2020880302 cites W97063873 @default.
- W2020880302 doi "https://doi.org/10.2478/mms-2014-0060" @default.
- W2020880302 hasPublicationYear "2014" @default.
- W2020880302 type Work @default.
- W2020880302 sameAs 2020880302 @default.
- W2020880302 citedByCount "50" @default.
- W2020880302 countsByYear W20208803022014 @default.
- W2020880302 countsByYear W20208803022015 @default.
- W2020880302 countsByYear W20208803022016 @default.
- W2020880302 countsByYear W20208803022017 @default.
- W2020880302 countsByYear W20208803022018 @default.
- W2020880302 countsByYear W20208803022019 @default.
- W2020880302 countsByYear W20208803022020 @default.
- W2020880302 countsByYear W20208803022021 @default.
- W2020880302 countsByYear W20208803022022 @default.
- W2020880302 countsByYear W20208803022023 @default.
- W2020880302 crossrefType "journal-article" @default.
- W2020880302 hasAuthorship W2020880302A5014982020 @default.
- W2020880302 hasAuthorship W2020880302A5082416494 @default.
- W2020880302 hasBestOaLocation W20208803021 @default.
- W2020880302 hasConcept C107365816 @default.
- W2020880302 hasConcept C111919701 @default.
- W2020880302 hasConcept C159985019 @default.
- W2020880302 hasConcept C191897082 @default.
- W2020880302 hasConcept C192562407 @default.
- W2020880302 hasConcept C41008148 @default.
- W2020880302 hasConcept C54355233 @default.
- W2020880302 hasConcept C552990157 @default.
- W2020880302 hasConcept C71039073 @default.
- W2020880302 hasConcept C86803240 @default.
- W2020880302 hasConcept C98045186 @default.
- W2020880302 hasConcept C99611785 @default.
- W2020880302 hasConceptScore W2020880302C107365816 @default.
- W2020880302 hasConceptScore W2020880302C111919701 @default.
- W2020880302 hasConceptScore W2020880302C159985019 @default.
- W2020880302 hasConceptScore W2020880302C191897082 @default.
- W2020880302 hasConceptScore W2020880302C192562407 @default.
- W2020880302 hasConceptScore W2020880302C41008148 @default.
- W2020880302 hasConceptScore W2020880302C54355233 @default.
- W2020880302 hasConceptScore W2020880302C552990157 @default.
- W2020880302 hasConceptScore W2020880302C71039073 @default.
- W2020880302 hasConceptScore W2020880302C86803240 @default.
- W2020880302 hasConceptScore W2020880302C98045186 @default.
- W2020880302 hasConceptScore W2020880302C99611785 @default.
- W2020880302 hasIssue "4" @default.
- W2020880302 hasLocation W20208803021 @default.
- W2020880302 hasLocation W20208803022 @default.
- W2020880302 hasOpenAccess W2020880302 @default.
- W2020880302 hasPrimaryLocation W20208803021 @default.
- W2020880302 hasRelatedWork W1995485687 @default.
- W2020880302 hasRelatedWork W2022507789 @default.
- W2020880302 hasRelatedWork W2072503384 @default.
- W2020880302 hasRelatedWork W2128047618 @default.
- W2020880302 hasRelatedWork W2737615919 @default.
- W2020880302 hasRelatedWork W2755750283 @default.
- W2020880302 hasRelatedWork W3114926727 @default.
- W2020880302 hasRelatedWork W4252751901 @default.
- W2020880302 hasRelatedWork W4281746734 @default.
- W2020880302 hasRelatedWork W4285727532 @default.
- W2020880302 hasVolume "21" @default.
- W2020880302 isParatext "false" @default.
- W2020880302 isRetracted "false" @default.
- W2020880302 magId "2020880302" @default.
- W2020880302 workType "article" @default.