Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020884611> ?p ?o ?g. }
- W2020884611 endingPage "811" @default.
- W2020884611 startingPage "801" @default.
- W2020884611 abstract "Incipient charnockites represent granulite formation on a mesoscopic scale and have received considerable attention in understanding fluid processes in the deep crust. Here we report new petrological data from an incipient charnockite locality at Rajapalaiyam in the Madurai Block, southern India, and discuss the petrogenesis based on mineral phase equilibrium modeling and pseudosection analysis. Rajapalaiyam is a key locality in southern India from where diagnostic mineral assemblages for ultrahigh-temperature (UHT) metamorphism have been reported. Proximal to the UHT rocks are patches and lenses of charnockite (Kfs + Qtz + Pl + Bt + Opx + Grt + Ilm) occurring within Opx-free Grt-Bt gneiss (Kfs + Pl + Qtz + Bt + Grt + Ilm + Mt) which we report in this study. The application of mineral equilibrium modeling on the charnockitic assemblage in NCKFMASHTO system yields a p-T range of ∼820 °C and ∼9 kbar. Modeling of the charnockite assemblage in the MnNCKFMASHTO system indicates a slight shift of the equilibrium condition toward lower p and T (∼760 °C and ∼7.5 kbar), which is consistent with the results obtained from geothermobarometry (710–760 °C, 6.7–7.5 kbar), but significantly lower than the peak temperatures (>1000 °C) recorded from the UHT rocks in this locality, suggesting that charnockitization is a post-peak event. The modeling of T versus molar H2O content in the rock (M(H2O)) demonstrates that the Opx-bearing assemblage in charnockite and Opx-free assemblage in Grt-Bt gneiss are both stable at M(H2O) = 0.3 mol%–0.6 mol%, and there is no significant difference in water activity between the two domains. Our finding is in contrast to the previous petrogenetic model of incipient charnockite formation which envisages lowering of water activity and stabilization of orthopyroxene through breakdown of biotite by dehydration caused by the infiltration of CO2-rich fluid. T-XFe3+ (=Fe2O3/(FeO + Fe2O3) in mole) pseudosections suggest that the oxidation condition of the rocks played a major role on the stability of orthopyroxene; Opx is stable at XFe3+ <0.03 in charnockite, while Opx-free assemblage in Grt-Bt gneiss is stabilized at XFe3+ >0.12. Such low oxygen fugacity conditions of XFe3+ <0.03 in the charnockite compared to Grt-Bt gneiss might be related to the infiltration of a reduced fluid (e.g., H2O + CH4) during the retrograde stage." @default.
- W2020884611 created "2016-06-24" @default.
- W2020884611 creator A5037461731 @default.
- W2020884611 creator A5045319949 @default.
- W2020884611 creator A5060053337 @default.
- W2020884611 creator A5069350652 @default.
- W2020884611 date "2012-11-01" @default.
- W2020884611 modified "2023-10-16" @default.
- W2020884611 title "Phase equilibrium modeling of incipient charnockite formation in NCKFMASHTO and MnNCKFMASHTO systems: A case study from Rajapalaiyam, Madurai Block, southern India" @default.
- W2020884611 cites W1868659645 @default.
- W2020884611 cites W1965040261 @default.
- W2020884611 cites W1966218310 @default.
- W2020884611 cites W1967125358 @default.
- W2020884611 cites W1967867454 @default.
- W2020884611 cites W1972909865 @default.
- W2020884611 cites W1977263417 @default.
- W2020884611 cites W1980155029 @default.
- W2020884611 cites W1985877846 @default.
- W2020884611 cites W1998977948 @default.
- W2020884611 cites W1999945042 @default.
- W2020884611 cites W2002842352 @default.
- W2020884611 cites W2005215910 @default.
- W2020884611 cites W2009251618 @default.
- W2020884611 cites W2010543867 @default.
- W2020884611 cites W2012177600 @default.
- W2020884611 cites W2013036381 @default.
- W2020884611 cites W2014767076 @default.
- W2020884611 cites W2017275175 @default.
- W2020884611 cites W2017725189 @default.
- W2020884611 cites W2021649974 @default.
- W2020884611 cites W2021788085 @default.
- W2020884611 cites W2035045796 @default.
- W2020884611 cites W2037774948 @default.
- W2020884611 cites W2039542496 @default.
- W2020884611 cites W2040519684 @default.
- W2020884611 cites W2042999003 @default.
- W2020884611 cites W2045287269 @default.
- W2020884611 cites W2047504082 @default.
- W2020884611 cites W2052699027 @default.
- W2020884611 cites W2052785062 @default.
- W2020884611 cites W2054493155 @default.
- W2020884611 cites W2059909839 @default.
- W2020884611 cites W2070108059 @default.
- W2020884611 cites W2088139195 @default.
- W2020884611 cites W2096379933 @default.
- W2020884611 cites W2102754912 @default.
- W2020884611 cites W2107837030 @default.
- W2020884611 cites W2123292886 @default.
- W2020884611 cites W2149860838 @default.
- W2020884611 cites W2171746390 @default.
- W2020884611 cites W2314518426 @default.
- W2020884611 cites W3141301723 @default.
- W2020884611 doi "https://doi.org/10.1016/j.gsf.2012.05.005" @default.
- W2020884611 hasPublicationYear "2012" @default.
- W2020884611 type Work @default.
- W2020884611 sameAs 2020884611 @default.
- W2020884611 citedByCount "27" @default.
- W2020884611 countsByYear W20208846112012 @default.
- W2020884611 countsByYear W20208846112013 @default.
- W2020884611 countsByYear W20208846112014 @default.
- W2020884611 countsByYear W20208846112015 @default.
- W2020884611 countsByYear W20208846112016 @default.
- W2020884611 countsByYear W20208846112017 @default.
- W2020884611 countsByYear W20208846112018 @default.
- W2020884611 countsByYear W20208846112019 @default.
- W2020884611 countsByYear W20208846112020 @default.
- W2020884611 countsByYear W20208846112021 @default.
- W2020884611 countsByYear W20208846112022 @default.
- W2020884611 countsByYear W20208846112023 @default.
- W2020884611 crossrefType "journal-article" @default.
- W2020884611 hasAuthorship W2020884611A5037461731 @default.
- W2020884611 hasAuthorship W2020884611A5045319949 @default.
- W2020884611 hasAuthorship W2020884611A5060053337 @default.
- W2020884611 hasAuthorship W2020884611A5069350652 @default.
- W2020884611 hasBestOaLocation W20208846111 @default.
- W2020884611 hasConcept C109007969 @default.
- W2020884611 hasConcept C112764850 @default.
- W2020884611 hasConcept C114793014 @default.
- W2020884611 hasConcept C127313418 @default.
- W2020884611 hasConcept C146588470 @default.
- W2020884611 hasConcept C150999391 @default.
- W2020884611 hasConcept C151730666 @default.
- W2020884611 hasConcept C171701179 @default.
- W2020884611 hasConcept C17409809 @default.
- W2020884611 hasConcept C178790620 @default.
- W2020884611 hasConcept C18142444 @default.
- W2020884611 hasConcept C185592680 @default.
- W2020884611 hasConcept C26687426 @default.
- W2020884611 hasConcept C2776432453 @default.
- W2020884611 hasConcept C35240230 @default.
- W2020884611 hasConcept C77928131 @default.
- W2020884611 hasConceptScore W2020884611C109007969 @default.
- W2020884611 hasConceptScore W2020884611C112764850 @default.
- W2020884611 hasConceptScore W2020884611C114793014 @default.
- W2020884611 hasConceptScore W2020884611C127313418 @default.
- W2020884611 hasConceptScore W2020884611C146588470 @default.
- W2020884611 hasConceptScore W2020884611C150999391 @default.
- W2020884611 hasConceptScore W2020884611C151730666 @default.