Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020898181> ?p ?o ?g. }
- W2020898181 endingPage "30" @default.
- W2020898181 startingPage "21" @default.
- W2020898181 abstract "Spatial epidemiological tools are increasingly being applied to emerging viral zoonoses (EVZ), partly because of improving analytical methods and technologies for data capture and management, and partly because the demand is growing for more objective ways of allocating limited resources in the face of the emerging threat posed by these diseases. This review documents applications of geographical information systems (GIS), remote sensing (RS) and spatially-explicit statistical and mathematical models to epidemiological studies of EVZ. Landscape epidemiology uses statistical associations between environmental variables and diseases to study and predict their spatial distributions. Phylogeography augments epidemiological knowledge by studying the evolution of viral genetics through space and time. Cluster detection and early warning systems assist surveillance and can permit timely interventions. Advanced statistical models can accommodate spatial dependence present in epidemiological datasets and can permit assessment of uncertainties in disease data and predictions. Mathematical models are particularly useful for testing and comparing alternative control strategies, whereas spatial decision-support systems integrate a variety of spatial epidemiological tools to facilitate widespread dissemination and interpretation of disease data. Improved spatial data collection systems and greater practical application of spatial epidemiological tools should be applied in real-world scenarios." @default.
- W2020898181 created "2016-06-24" @default.
- W2020898181 creator A5016266491 @default.
- W2020898181 creator A5081115982 @default.
- W2020898181 date "2009-10-01" @default.
- W2020898181 modified "2023-09-28" @default.
- W2020898181 title "Emerging viral zoonoses: Frameworks for spatial and spatiotemporal risk assessment and resource planning" @default.
- W2020898181 cites W1486091485 @default.
- W2020898181 cites W1488519167 @default.
- W2020898181 cites W1526169407 @default.
- W2020898181 cites W1530599454 @default.
- W2020898181 cites W1538974089 @default.
- W2020898181 cites W1604718429 @default.
- W2020898181 cites W1618521588 @default.
- W2020898181 cites W1840790362 @default.
- W2020898181 cites W1964394367 @default.
- W2020898181 cites W1968011152 @default.
- W2020898181 cites W1970143540 @default.
- W2020898181 cites W1973194618 @default.
- W2020898181 cites W1973824065 @default.
- W2020898181 cites W1976430185 @default.
- W2020898181 cites W1977109506 @default.
- W2020898181 cites W1980883230 @default.
- W2020898181 cites W1981425039 @default.
- W2020898181 cites W1983804044 @default.
- W2020898181 cites W1986080785 @default.
- W2020898181 cites W1997918899 @default.
- W2020898181 cites W2003423861 @default.
- W2020898181 cites W2004014822 @default.
- W2020898181 cites W2010651552 @default.
- W2020898181 cites W2013513000 @default.
- W2020898181 cites W2023473182 @default.
- W2020898181 cites W2024419877 @default.
- W2020898181 cites W2024558881 @default.
- W2020898181 cites W2031716171 @default.
- W2020898181 cites W2034785206 @default.
- W2020898181 cites W2045008519 @default.
- W2020898181 cites W2047418889 @default.
- W2020898181 cites W2049844019 @default.
- W2020898181 cites W2051488738 @default.
- W2020898181 cites W2054354272 @default.
- W2020898181 cites W2060028997 @default.
- W2020898181 cites W2061559465 @default.
- W2020898181 cites W2065033137 @default.
- W2020898181 cites W2066510244 @default.
- W2020898181 cites W2067375197 @default.
- W2020898181 cites W2069911468 @default.
- W2020898181 cites W2070438870 @default.
- W2020898181 cites W2073222618 @default.
- W2020898181 cites W2076944834 @default.
- W2020898181 cites W2077176187 @default.
- W2020898181 cites W2091830289 @default.
- W2020898181 cites W2097904929 @default.
- W2020898181 cites W2099347755 @default.
- W2020898181 cites W2100506962 @default.
- W2020898181 cites W2100872222 @default.
- W2020898181 cites W2102461707 @default.
- W2020898181 cites W2105427558 @default.
- W2020898181 cites W2106463460 @default.
- W2020898181 cites W2106790490 @default.
- W2020898181 cites W2110624421 @default.
- W2020898181 cites W2113276874 @default.
- W2020898181 cites W2115714850 @default.
- W2020898181 cites W2118373298 @default.
- W2020898181 cites W2118946263 @default.
- W2020898181 cites W2124396172 @default.
- W2020898181 cites W2127593937 @default.
- W2020898181 cites W2131021677 @default.
- W2020898181 cites W2132056228 @default.
- W2020898181 cites W2136815008 @default.
- W2020898181 cites W2141940160 @default.
- W2020898181 cites W2145068255 @default.
- W2020898181 cites W2145303956 @default.
- W2020898181 cites W2147385691 @default.
- W2020898181 cites W2148812002 @default.
- W2020898181 cites W2159161166 @default.
- W2020898181 cites W2162235679 @default.
- W2020898181 cites W2167428501 @default.
- W2020898181 cites W2168199326 @default.
- W2020898181 cites W2169382452 @default.
- W2020898181 cites W2178199778 @default.
- W2020898181 cites W2180672553 @default.
- W2020898181 cites W2581907372 @default.
- W2020898181 doi "https://doi.org/10.1016/j.tvjl.2008.05.010" @default.
- W2020898181 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7110545" @default.
- W2020898181 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18718800" @default.
- W2020898181 hasPublicationYear "2009" @default.
- W2020898181 type Work @default.
- W2020898181 sameAs 2020898181 @default.
- W2020898181 citedByCount "52" @default.
- W2020898181 countsByYear W20208981812012 @default.
- W2020898181 countsByYear W20208981812013 @default.
- W2020898181 countsByYear W20208981812014 @default.
- W2020898181 countsByYear W20208981812015 @default.
- W2020898181 countsByYear W20208981812016 @default.
- W2020898181 countsByYear W20208981812017 @default.
- W2020898181 countsByYear W20208981812018 @default.
- W2020898181 countsByYear W20208981812019 @default.