Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020908118> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2020908118 endingPage "165" @default.
- W2020908118 startingPage "157" @default.
- W2020908118 abstract "The accuracies of neural network and statistical methods were similar for classifying the origin of black teas from their phenolic composition. When the data are non-normal, as was the case for the pine resin samples, the neural network offered a significant improvement. Neural networks were less accurate than stepwise multiple regression as a model for predicting black tea score and price from their chemical composition and sensory attributes. The accuracy improved and the training time was reduced when training variables chosen by stepwise multiple regression were selected. An advantage of the neural network model is that a single model could predict several parameters simultaneously. The selection criterion of neural networks could be estimated by inspection of the most positive weights derived from two-layer trained networks." @default.
- W2020908118 created "2016-06-24" @default.
- W2020908118 creator A5015515563 @default.
- W2020908118 date "1994-01-01" @default.
- W2020908118 modified "2023-09-23" @default.
- W2020908118 title "Prediction of quality and origin of black tea and pine resin samples from chromatographic and sensory information: evaluation of neural networks" @default.
- W2020908118 cites W1973915541 @default.
- W2020908118 cites W2001804574 @default.
- W2020908118 cites W2012343232 @default.
- W2020908118 cites W2017530427 @default.
- W2020908118 cites W2030302734 @default.
- W2020908118 cites W2035158323 @default.
- W2020908118 cites W2046086211 @default.
- W2020908118 cites W2067468842 @default.
- W2020908118 cites W2071345536 @default.
- W2020908118 cites W2073057438 @default.
- W2020908118 cites W2076480956 @default.
- W2020908118 cites W2079335151 @default.
- W2020908118 cites W2088882033 @default.
- W2020908118 cites W2101927907 @default.
- W2020908118 doi "https://doi.org/10.1016/0308-8146(94)90114-7" @default.
- W2020908118 hasPublicationYear "1994" @default.
- W2020908118 type Work @default.
- W2020908118 sameAs 2020908118 @default.
- W2020908118 citedByCount "22" @default.
- W2020908118 countsByYear W20209081182017 @default.
- W2020908118 countsByYear W20209081182019 @default.
- W2020908118 crossrefType "journal-article" @default.
- W2020908118 hasAuthorship W2020908118A5015515563 @default.
- W2020908118 hasConcept C105795698 @default.
- W2020908118 hasConcept C152877465 @default.
- W2020908118 hasConcept C153180895 @default.
- W2020908118 hasConcept C154945302 @default.
- W2020908118 hasConcept C169760540 @default.
- W2020908118 hasConcept C170964787 @default.
- W2020908118 hasConcept C185592680 @default.
- W2020908118 hasConcept C186060115 @default.
- W2020908118 hasConcept C2992231244 @default.
- W2020908118 hasConcept C31903555 @default.
- W2020908118 hasConcept C33923547 @default.
- W2020908118 hasConcept C41008148 @default.
- W2020908118 hasConcept C50644808 @default.
- W2020908118 hasConcept C81917197 @default.
- W2020908118 hasConcept C83546350 @default.
- W2020908118 hasConcept C86803240 @default.
- W2020908118 hasConcept C94487597 @default.
- W2020908118 hasConceptScore W2020908118C105795698 @default.
- W2020908118 hasConceptScore W2020908118C152877465 @default.
- W2020908118 hasConceptScore W2020908118C153180895 @default.
- W2020908118 hasConceptScore W2020908118C154945302 @default.
- W2020908118 hasConceptScore W2020908118C169760540 @default.
- W2020908118 hasConceptScore W2020908118C170964787 @default.
- W2020908118 hasConceptScore W2020908118C185592680 @default.
- W2020908118 hasConceptScore W2020908118C186060115 @default.
- W2020908118 hasConceptScore W2020908118C2992231244 @default.
- W2020908118 hasConceptScore W2020908118C31903555 @default.
- W2020908118 hasConceptScore W2020908118C33923547 @default.
- W2020908118 hasConceptScore W2020908118C41008148 @default.
- W2020908118 hasConceptScore W2020908118C50644808 @default.
- W2020908118 hasConceptScore W2020908118C81917197 @default.
- W2020908118 hasConceptScore W2020908118C83546350 @default.
- W2020908118 hasConceptScore W2020908118C86803240 @default.
- W2020908118 hasConceptScore W2020908118C94487597 @default.
- W2020908118 hasIssue "2" @default.
- W2020908118 hasLocation W20209081181 @default.
- W2020908118 hasOpenAccess W2020908118 @default.
- W2020908118 hasPrimaryLocation W20209081181 @default.
- W2020908118 hasRelatedWork W1970158984 @default.
- W2020908118 hasRelatedWork W2020908118 @default.
- W2020908118 hasRelatedWork W2094213028 @default.
- W2020908118 hasRelatedWork W2350563281 @default.
- W2020908118 hasRelatedWork W2359645249 @default.
- W2020908118 hasRelatedWork W2371761458 @default.
- W2020908118 hasRelatedWork W2382345487 @default.
- W2020908118 hasRelatedWork W247449116 @default.
- W2020908118 hasRelatedWork W44973182 @default.
- W2020908118 hasRelatedWork W217535937 @default.
- W2020908118 hasVolume "50" @default.
- W2020908118 isParatext "false" @default.
- W2020908118 isRetracted "false" @default.
- W2020908118 magId "2020908118" @default.
- W2020908118 workType "article" @default.