Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020946357> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2020946357 abstract "We propose a general class of prior distributions for arbitrary regression models. We discuss parametric and semiparametric models. The prior specification for the regression coefficients focuses on observable quantities in that the elicitation is based on the availability of historical data $D_0$ and a scalar quantity $a_0$ quantifying the uncertainty in $D_0$. Then $D_0$ and $a_0$ are used to specify a prior for the regression coefficients in a semiautomatic fashion. The most natural specification of $D_0$ arises when the raw data from a similar previous study are available. The availability of historical data is quite common in clinical trials, carcinogenicity studies, and environmental studies, where large data bases are available from similar previous studies. Although the methodology we present here is quite general, we will focus only on using historical data from similar previous studies to construct the prior distributions. The prior distributions are based on the idea of raising the likelihood function of the historical data to the power $a_0$, where $0 le a_0 le 1$. We call such prior distributions power prior distributions. We examine the power prior for four commonly used classes of regression models. These include generalized linear models, generalized linear mixed models, semiparametric proportional hazards models, and cure rate models for survival data. For these classes of models, we discuss the construction of the power prior, prior elicitation issues, propriety conditions, model selection, and several other properties. For each class of models, we present real data sets to demonstrate the proposed methodology." @default.
- W2020946357 created "2016-06-24" @default.
- W2020946357 creator A5060082763 @default.
- W2020946357 creator A5078399867 @default.
- W2020946357 date "2000-02-01" @default.
- W2020946357 modified "2023-10-11" @default.
- W2020946357 title "Power prior distributions for regression models" @default.
- W2020946357 cites W1968471614 @default.
- W2020946357 cites W2008966356 @default.
- W2020946357 cites W2028654863 @default.
- W2020946357 cites W2107120167 @default.
- W2020946357 cites W2107152250 @default.
- W2020946357 cites W2166320036 @default.
- W2020946357 cites W2325400587 @default.
- W2020946357 cites W2404521346 @default.
- W2020946357 cites W2471967545 @default.
- W2020946357 cites W4233936754 @default.
- W2020946357 cites W4239353198 @default.
- W2020946357 cites W4243236170 @default.
- W2020946357 cites W4255908372 @default.
- W2020946357 cites W4300117443 @default.
- W2020946357 doi "https://doi.org/10.1214/ss/1009212673" @default.
- W2020946357 hasPublicationYear "2000" @default.
- W2020946357 type Work @default.
- W2020946357 sameAs 2020946357 @default.
- W2020946357 citedByCount "486" @default.
- W2020946357 countsByYear W20209463572012 @default.
- W2020946357 countsByYear W20209463572013 @default.
- W2020946357 countsByYear W20209463572014 @default.
- W2020946357 countsByYear W20209463572015 @default.
- W2020946357 countsByYear W20209463572016 @default.
- W2020946357 countsByYear W20209463572017 @default.
- W2020946357 countsByYear W20209463572018 @default.
- W2020946357 countsByYear W20209463572019 @default.
- W2020946357 countsByYear W20209463572020 @default.
- W2020946357 countsByYear W20209463572021 @default.
- W2020946357 countsByYear W20209463572022 @default.
- W2020946357 countsByYear W20209463572023 @default.
- W2020946357 crossrefType "journal-article" @default.
- W2020946357 hasAuthorship W2020946357A5060082763 @default.
- W2020946357 hasAuthorship W2020946357A5078399867 @default.
- W2020946357 hasBestOaLocation W20209463571 @default.
- W2020946357 hasConcept C105795698 @default.
- W2020946357 hasConcept C107673813 @default.
- W2020946357 hasConcept C117251300 @default.
- W2020946357 hasConcept C149782125 @default.
- W2020946357 hasConcept C152877465 @default.
- W2020946357 hasConcept C177769412 @default.
- W2020946357 hasConcept C19539793 @default.
- W2020946357 hasConcept C24574437 @default.
- W2020946357 hasConcept C33923547 @default.
- W2020946357 hasConcept C41008148 @default.
- W2020946357 hasConcept C48921125 @default.
- W2020946357 hasConcept C83546350 @default.
- W2020946357 hasConcept C93959086 @default.
- W2020946357 hasConceptScore W2020946357C105795698 @default.
- W2020946357 hasConceptScore W2020946357C107673813 @default.
- W2020946357 hasConceptScore W2020946357C117251300 @default.
- W2020946357 hasConceptScore W2020946357C149782125 @default.
- W2020946357 hasConceptScore W2020946357C152877465 @default.
- W2020946357 hasConceptScore W2020946357C177769412 @default.
- W2020946357 hasConceptScore W2020946357C19539793 @default.
- W2020946357 hasConceptScore W2020946357C24574437 @default.
- W2020946357 hasConceptScore W2020946357C33923547 @default.
- W2020946357 hasConceptScore W2020946357C41008148 @default.
- W2020946357 hasConceptScore W2020946357C48921125 @default.
- W2020946357 hasConceptScore W2020946357C83546350 @default.
- W2020946357 hasConceptScore W2020946357C93959086 @default.
- W2020946357 hasIssue "1" @default.
- W2020946357 hasLocation W20209463571 @default.
- W2020946357 hasOpenAccess W2020946357 @default.
- W2020946357 hasPrimaryLocation W20209463571 @default.
- W2020946357 hasRelatedWork W1564806038 @default.
- W2020946357 hasRelatedWork W2055455145 @default.
- W2020946357 hasRelatedWork W2120964732 @default.
- W2020946357 hasRelatedWork W2143933215 @default.
- W2020946357 hasRelatedWork W2156281018 @default.
- W2020946357 hasRelatedWork W2392538999 @default.
- W2020946357 hasRelatedWork W2609267466 @default.
- W2020946357 hasRelatedWork W3121895403 @default.
- W2020946357 hasRelatedWork W3141056611 @default.
- W2020946357 hasRelatedWork W3150947797 @default.
- W2020946357 hasVolume "15" @default.
- W2020946357 isParatext "false" @default.
- W2020946357 isRetracted "false" @default.
- W2020946357 magId "2020946357" @default.
- W2020946357 workType "article" @default.