Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020970160> ?p ?o ?g. }
- W2020970160 endingPage "40" @default.
- W2020970160 startingPage "33" @default.
- W2020970160 abstract "Computed tomography (CT) plays a central role in lung cancer diagnosis. However, CT has relatively low specificity, presenting a challenge in clinical settings. We previously identified 12 microRNAs (miRNAs) whose expressions in tumor tissues were associated with lung cancer.Using quantitative reverse transcriptase polymerase chain reaction, we aimed to identify miRNA biomarkers in sputum that could complement CT for diagnosis of lung cancer.In a training set consisting of 66 lung cancer patients and 68 cancer-free smokers, 10 of the 12 miRNAs were differentially expressed between the cases and controls (p ≤ 0.01). From the miRNAs, a logistic regression model was built on the basis of miR-31 and miR-210, both of which had the best prediction for lung cancer, producing an area under receiver operating characteristic curve of 0.83. Combined use of the two miRNAs yielded 65.2% sensitivity and 89.7% specificity, CT had 93.9% sensitivity and 83.8% specificity for lung cancer diagnosis. Notably, combined analysis of the miRNA biomarkers and CT produced a higher specificity than does CT used alone (91.2% versus 83.8%; p < 0.05). The diagnostic performance of the biomarkers was confirmed in a testing set comprising 64 lung cancer patients and 73 cancer-free smokers.The sputum miRNA biomarkers might be useful in improving CT for diagnosis of lung cancer, but further independent validation on an external and prospective cohort of patients is required." @default.
- W2020970160 created "2016-06-24" @default.
- W2020970160 creator A5018392902 @default.
- W2020970160 creator A5019944599 @default.
- W2020970160 creator A5027842285 @default.
- W2020970160 creator A5044315460 @default.
- W2020970160 creator A5049413313 @default.
- W2020970160 creator A5076571826 @default.
- W2020970160 creator A5086948389 @default.
- W2020970160 date "2014-01-01" @default.
- W2020970160 modified "2023-10-05" @default.
- W2020970160 title "Analysis of MicroRNAs in Sputum to Improve Computed Tomography for Lung Cancer Diagnosis" @default.
- W2020970160 cites W130099911 @default.
- W2020970160 cites W1944920217 @default.
- W2020970160 cites W1961597219 @default.
- W2020970160 cites W1978944350 @default.
- W2020970160 cites W1986345950 @default.
- W2020970160 cites W1996745846 @default.
- W2020970160 cites W2003064926 @default.
- W2020970160 cites W2009365842 @default.
- W2020970160 cites W2014791034 @default.
- W2020970160 cites W2016603895 @default.
- W2020970160 cites W2023428878 @default.
- W2020970160 cites W2025449301 @default.
- W2020970160 cites W2026192997 @default.
- W2020970160 cites W2026595595 @default.
- W2020970160 cites W2028382060 @default.
- W2020970160 cites W2036073175 @default.
- W2020970160 cites W2038206806 @default.
- W2020970160 cites W2049674541 @default.
- W2020970160 cites W2055804777 @default.
- W2020970160 cites W2058680827 @default.
- W2020970160 cites W2064316340 @default.
- W2020970160 cites W2068394634 @default.
- W2020970160 cites W2072363520 @default.
- W2020970160 cites W2074629894 @default.
- W2020970160 cites W2076674787 @default.
- W2020970160 cites W2076888649 @default.
- W2020970160 cites W2079819329 @default.
- W2020970160 cites W2080384607 @default.
- W2020970160 cites W2086809547 @default.
- W2020970160 cites W2102511272 @default.
- W2020970160 cites W2106789761 @default.
- W2020970160 cites W2107584286 @default.
- W2020970160 cites W2107813383 @default.
- W2020970160 cites W2112618205 @default.
- W2020970160 cites W2118019849 @default.
- W2020970160 cites W2121422066 @default.
- W2020970160 cites W2126560850 @default.
- W2020970160 cites W2128180660 @default.
- W2020970160 cites W2129765105 @default.
- W2020970160 cites W2130979840 @default.
- W2020970160 cites W2132836850 @default.
- W2020970160 cites W2134701276 @default.
- W2020970160 cites W2144092203 @default.
- W2020970160 cites W2144149602 @default.
- W2020970160 cites W2154583077 @default.
- W2020970160 cites W2157709503 @default.
- W2020970160 cites W2157825442 @default.
- W2020970160 cites W2161817637 @default.
- W2020970160 cites W4235650642 @default.
- W2020970160 doi "https://doi.org/10.1097/jto.0000000000000025" @default.
- W2020970160 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4967496" @default.
- W2020970160 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24305007" @default.
- W2020970160 hasPublicationYear "2014" @default.
- W2020970160 type Work @default.
- W2020970160 sameAs 2020970160 @default.
- W2020970160 citedByCount "90" @default.
- W2020970160 countsByYear W20209701602014 @default.
- W2020970160 countsByYear W20209701602015 @default.
- W2020970160 countsByYear W20209701602016 @default.
- W2020970160 countsByYear W20209701602017 @default.
- W2020970160 countsByYear W20209701602018 @default.
- W2020970160 countsByYear W20209701602019 @default.
- W2020970160 countsByYear W20209701602020 @default.
- W2020970160 countsByYear W20209701602021 @default.
- W2020970160 countsByYear W20209701602022 @default.
- W2020970160 countsByYear W20209701602023 @default.
- W2020970160 crossrefType "journal-article" @default.
- W2020970160 hasAuthorship W2020970160A5018392902 @default.
- W2020970160 hasAuthorship W2020970160A5019944599 @default.
- W2020970160 hasAuthorship W2020970160A5027842285 @default.
- W2020970160 hasAuthorship W2020970160A5044315460 @default.
- W2020970160 hasAuthorship W2020970160A5049413313 @default.
- W2020970160 hasAuthorship W2020970160A5076571826 @default.
- W2020970160 hasAuthorship W2020970160A5086948389 @default.
- W2020970160 hasBestOaLocation W20209701601 @default.
- W2020970160 hasConcept C104317684 @default.
- W2020970160 hasConcept C121608353 @default.
- W2020970160 hasConcept C126322002 @default.
- W2020970160 hasConcept C126838900 @default.
- W2020970160 hasConcept C142724271 @default.
- W2020970160 hasConcept C143998085 @default.
- W2020970160 hasConcept C145059251 @default.
- W2020970160 hasConcept C151956035 @default.
- W2020970160 hasConcept C185592680 @default.
- W2020970160 hasConcept C188816634 @default.
- W2020970160 hasConcept C2776256026 @default.