Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020982106> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2020982106 abstract "Abstract Two broad approaches to the mathematical modelling of dilute solutions of hydrodynamically interacting macromolecules using bead-spring or bead-rod chains have emerged over the last 60 years or so: the diffusion equation of Kirkwood [23] and the coupled stochastic equations describing the evolution of polymer conformations and of the solvent, first elaborated by Oono and Freed [38] . In this paper we prove, using elementary arguments, that Kirkwood’s diffusion equation may be derived from the Oono–Freed equations provided one assumes that the solvent velocity satisfies the quasi-steady Stokes equations and makes the correct interpretation of the bead stochastic equations. In the appendix to this paper we show that provided the friction coefficient is set equal to the Stokesian value the equation of motion that we derive for the special case of a single point particle is the same, to leading order, as that of a small sphere moving slowly through a Newtonian fluid at a distance greatly exceeding its radius from the nearest solid boundary. This is illustrated for a particle moving in a semi-infinite expanse of fluid in which case the classical results of Lorentz [31] are recovered." @default.
- W2020982106 created "2016-06-24" @default.
- W2020982106 creator A5049499514 @default.
- W2020982106 creator A5050299637 @default.
- W2020982106 date "2011-11-01" @default.
- W2020982106 modified "2023-10-01" @default.
- W2020982106 title "Some remarks on the equivalence of Kirkwood’s diffusion equation and the coupled fluctuating polymer and solvent kinetic equations of Oono and Freed" @default.
- W2020982106 cites W1035754537 @default.
- W2020982106 cites W1583349793 @default.
- W2020982106 cites W1869349964 @default.
- W2020982106 cites W1977564655 @default.
- W2020982106 cites W1980197462 @default.
- W2020982106 cites W1980960843 @default.
- W2020982106 cites W1983217533 @default.
- W2020982106 cites W1987050044 @default.
- W2020982106 cites W1991825913 @default.
- W2020982106 cites W1994861434 @default.
- W2020982106 cites W1998951214 @default.
- W2020982106 cites W2009454629 @default.
- W2020982106 cites W2016527271 @default.
- W2020982106 cites W2017898935 @default.
- W2020982106 cites W2023269994 @default.
- W2020982106 cites W2031829900 @default.
- W2020982106 cites W2035138154 @default.
- W2020982106 cites W2039007050 @default.
- W2020982106 cites W2039253844 @default.
- W2020982106 cites W2039421507 @default.
- W2020982106 cites W2041651309 @default.
- W2020982106 cites W2045401179 @default.
- W2020982106 cites W2046803170 @default.
- W2020982106 cites W2047602050 @default.
- W2020982106 cites W2049420995 @default.
- W2020982106 cites W2059062800 @default.
- W2020982106 cites W2062567702 @default.
- W2020982106 cites W2071506921 @default.
- W2020982106 cites W2071883863 @default.
- W2020982106 cites W2079017664 @default.
- W2020982106 cites W2079122045 @default.
- W2020982106 cites W2080381936 @default.
- W2020982106 cites W2085354157 @default.
- W2020982106 cites W2087404487 @default.
- W2020982106 cites W2089355990 @default.
- W2020982106 cites W2090406621 @default.
- W2020982106 cites W2118356919 @default.
- W2020982106 cites W2124192278 @default.
- W2020982106 cites W2133932219 @default.
- W2020982106 cites W2160604056 @default.
- W2020982106 cites W2162346049 @default.
- W2020982106 cites W350440970 @default.
- W2020982106 cites W576767351 @default.
- W2020982106 cites W1967915003 @default.
- W2020982106 cites W2492908940 @default.
- W2020982106 doi "https://doi.org/10.1016/j.jnnfm.2011.08.007" @default.
- W2020982106 hasPublicationYear "2011" @default.
- W2020982106 type Work @default.
- W2020982106 sameAs 2020982106 @default.
- W2020982106 citedByCount "1" @default.
- W2020982106 crossrefType "journal-article" @default.
- W2020982106 hasAuthorship W2020982106A5049499514 @default.
- W2020982106 hasAuthorship W2020982106A5050299637 @default.
- W2020982106 hasConcept C121332964 @default.
- W2020982106 hasConcept C294558 @default.
- W2020982106 hasConcept C69357855 @default.
- W2020982106 hasConcept C74650414 @default.
- W2020982106 hasConcept C97355855 @default.
- W2020982106 hasConceptScore W2020982106C121332964 @default.
- W2020982106 hasConceptScore W2020982106C294558 @default.
- W2020982106 hasConceptScore W2020982106C69357855 @default.
- W2020982106 hasConceptScore W2020982106C74650414 @default.
- W2020982106 hasConceptScore W2020982106C97355855 @default.
- W2020982106 hasLocation W20209821061 @default.
- W2020982106 hasOpenAccess W2020982106 @default.
- W2020982106 hasPrimaryLocation W20209821061 @default.
- W2020982106 hasRelatedWork W1968056917 @default.
- W2020982106 hasRelatedWork W1989405999 @default.
- W2020982106 hasRelatedWork W1998924298 @default.
- W2020982106 hasRelatedWork W2024040486 @default.
- W2020982106 hasRelatedWork W2041298848 @default.
- W2020982106 hasRelatedWork W2045912956 @default.
- W2020982106 hasRelatedWork W2054016185 @default.
- W2020982106 hasRelatedWork W2056916748 @default.
- W2020982106 hasRelatedWork W2071838806 @default.
- W2020982106 hasRelatedWork W2078193354 @default.
- W2020982106 hasRelatedWork W2078238158 @default.
- W2020982106 hasRelatedWork W2109658676 @default.
- W2020982106 hasRelatedWork W2210808006 @default.
- W2020982106 hasRelatedWork W2522381584 @default.
- W2020982106 hasRelatedWork W2735201778 @default.
- W2020982106 hasRelatedWork W2905525471 @default.
- W2020982106 hasRelatedWork W2951800171 @default.
- W2020982106 hasRelatedWork W2083237892 @default.
- W2020982106 hasRelatedWork W2523437917 @default.
- W2020982106 hasRelatedWork W79390708 @default.
- W2020982106 isParatext "false" @default.
- W2020982106 isRetracted "false" @default.
- W2020982106 magId "2020982106" @default.
- W2020982106 workType "article" @default.