Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020986557> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2020986557 abstract "A decision model is presented to increase the specificity of breast biopsy directly optimized on the receiver operating characteristic (ROC) area index. ROC area has higher clinical significance as a performance measure than the traditional metric mean-squared error (MSE). Excisional biopsy as practiced is highly sensitive to cancer but nonspecific; only one in three biopsies is malignant. Data for this study consists of 500 cases randomly selected from patients who underwent excisional biopsy for definitive diagnosis of breast cancer. For each case, inputs to the model consist of mammographic findings and patient history features. Outputs from the model built may be thresholded to correspond to the decision to biopsy a suspicious breast lesion. While clinically relevant, ROC area is a discontinuous function which cannot be optimized directly so a genetic algorithm approach is used to train a nonlinear artificial neural network. Performance using the genetic algorithm method of training was similar to that of a decision model trained using the traditional approach for this data set. ROC areas were obtained after training using three different approaches: genetic algorithm training optimized on ROC area produced an ROC area of 0.845 +/- 0.039, genetic algorithm training optimized on MSE produced an ROC area of 0.845 +/- 0.039, and traditional training using backpropagation produced an ROC area of 0.848 +/- 0.039. Despite the similar performance measures for models trained on this data, it is possible that with different data sets, training on ROC instead of MSE will produce models with significantly different performance. In this case, the genetic algorithm approach will prove useful." @default.
- W2020986557 created "2016-06-24" @default.
- W2020986557 creator A5045279825 @default.
- W2020986557 creator A5072806479 @default.
- W2020986557 date "1998-06-24" @default.
- W2020986557 modified "2023-09-23" @default.
- W2020986557 title "<title>Analysis of mammographic findings and patient history data with genetic algorithms for the prediction of breast cancer biopsy outcome</title>" @default.
- W2020986557 doi "https://doi.org/10.1117/12.310897" @default.
- W2020986557 hasPublicationYear "1998" @default.
- W2020986557 type Work @default.
- W2020986557 sameAs 2020986557 @default.
- W2020986557 citedByCount "3" @default.
- W2020986557 countsByYear W20209865572014 @default.
- W2020986557 crossrefType "proceedings-article" @default.
- W2020986557 hasAuthorship W2020986557A5045279825 @default.
- W2020986557 hasAuthorship W2020986557A5072806479 @default.
- W2020986557 hasConcept C105795698 @default.
- W2020986557 hasConcept C11413529 @default.
- W2020986557 hasConcept C119857082 @default.
- W2020986557 hasConcept C121608353 @default.
- W2020986557 hasConcept C126322002 @default.
- W2020986557 hasConcept C126838900 @default.
- W2020986557 hasConcept C139945424 @default.
- W2020986557 hasConcept C153180895 @default.
- W2020986557 hasConcept C154945302 @default.
- W2020986557 hasConcept C162324750 @default.
- W2020986557 hasConcept C176217482 @default.
- W2020986557 hasConcept C21547014 @default.
- W2020986557 hasConcept C2775934546 @default.
- W2020986557 hasConcept C2780472235 @default.
- W2020986557 hasConcept C33923547 @default.
- W2020986557 hasConcept C41008148 @default.
- W2020986557 hasConcept C50644808 @default.
- W2020986557 hasConcept C530470458 @default.
- W2020986557 hasConcept C58471807 @default.
- W2020986557 hasConcept C71924100 @default.
- W2020986557 hasConcept C8880873 @default.
- W2020986557 hasConceptScore W2020986557C105795698 @default.
- W2020986557 hasConceptScore W2020986557C11413529 @default.
- W2020986557 hasConceptScore W2020986557C119857082 @default.
- W2020986557 hasConceptScore W2020986557C121608353 @default.
- W2020986557 hasConceptScore W2020986557C126322002 @default.
- W2020986557 hasConceptScore W2020986557C126838900 @default.
- W2020986557 hasConceptScore W2020986557C139945424 @default.
- W2020986557 hasConceptScore W2020986557C153180895 @default.
- W2020986557 hasConceptScore W2020986557C154945302 @default.
- W2020986557 hasConceptScore W2020986557C162324750 @default.
- W2020986557 hasConceptScore W2020986557C176217482 @default.
- W2020986557 hasConceptScore W2020986557C21547014 @default.
- W2020986557 hasConceptScore W2020986557C2775934546 @default.
- W2020986557 hasConceptScore W2020986557C2780472235 @default.
- W2020986557 hasConceptScore W2020986557C33923547 @default.
- W2020986557 hasConceptScore W2020986557C41008148 @default.
- W2020986557 hasConceptScore W2020986557C50644808 @default.
- W2020986557 hasConceptScore W2020986557C530470458 @default.
- W2020986557 hasConceptScore W2020986557C58471807 @default.
- W2020986557 hasConceptScore W2020986557C71924100 @default.
- W2020986557 hasConceptScore W2020986557C8880873 @default.
- W2020986557 hasLocation W20209865571 @default.
- W2020986557 hasOpenAccess W2020986557 @default.
- W2020986557 hasPrimaryLocation W20209865571 @default.
- W2020986557 hasRelatedWork W2103325956 @default.
- W2020986557 hasRelatedWork W2342057803 @default.
- W2020986557 hasRelatedWork W2359549665 @default.
- W2020986557 hasRelatedWork W2382761789 @default.
- W2020986557 hasRelatedWork W2392110728 @default.
- W2020986557 hasRelatedWork W2987335104 @default.
- W2020986557 hasRelatedWork W2995227436 @default.
- W2020986557 hasRelatedWork W3174196512 @default.
- W2020986557 hasRelatedWork W4281693556 @default.
- W2020986557 hasRelatedWork W1629725936 @default.
- W2020986557 isParatext "false" @default.
- W2020986557 isRetracted "false" @default.
- W2020986557 magId "2020986557" @default.
- W2020986557 workType "article" @default.