Matches in SemOpenAlex for { <https://semopenalex.org/work/W2021003221> ?p ?o ?g. }
- W2021003221 endingPage "1427" @default.
- W2021003221 startingPage "1413" @default.
- W2021003221 abstract "How do we retrieve cartoon characters accurately? Or how to synthesize new cartoon clips smoothly and efficiently from the cartoon library? Both questions are important for animators and cartoon enthusiasts to design and create new cartoons by utilizing existing cartoon materials. The first key issue to answer those questions is to find a proper representation that describes the cartoon character effectively. In this paper, we consider multiple features from different views, i.e., color histogram, Hausdorff edge feature, and skeleton feature, to represent cartoon characters with different colors, shapes, and gestures. Each visual feature reflects a unique characteristic of a cartoon character, and they are complementary to each other for retrieval and synthesis. However, how to combine the three visual features is the second key issue of our application. By simply concatenating them into a long vector, it will end up with the so-called “curse of dimensionality,” let alone their heterogeneity embedded in different visual feature spaces. Here, we introduce a semisupervised multiview subspace learning (semi-MSL) algorithm, to encode different features in a unified space. Specifically, under the patch alignment framework, semi-MSL uses the discriminative information from labeled cartoon characters in the construction of local patches where the manifold structure revealed by unlabeled cartoon characters is utilized to capture the geometric distribution. The experimental evaluations based on both cartoon character retrieval and clip synthesis demonstrate the effectiveness of the proposed method for cartoon application. Moreover, additional results of content-based image retrieval on benchmark data suggest the generality of semi-MSL for other applications." @default.
- W2021003221 created "2016-06-24" @default.
- W2021003221 creator A5005182563 @default.
- W2021003221 creator A5046543877 @default.
- W2021003221 creator A5050817770 @default.
- W2021003221 creator A5074103823 @default.
- W2021003221 date "2012-10-01" @default.
- W2021003221 modified "2023-09-23" @default.
- W2021003221 title "On Combining Multiple Features for Cartoon Character Retrieval and Clip Synthesis" @default.
- W2021003221 cites W1523467832 @default.
- W2021003221 cites W1971771186 @default.
- W2021003221 cites W1977814411 @default.
- W2021003221 cites W1984907405 @default.
- W2021003221 cites W2001141328 @default.
- W2021003221 cites W2007972815 @default.
- W2021003221 cites W2015430519 @default.
- W2021003221 cites W2039118116 @default.
- W2021003221 cites W2046589280 @default.
- W2021003221 cites W2050831357 @default.
- W2021003221 cites W2051290159 @default.
- W2021003221 cites W2057175746 @default.
- W2021003221 cites W2059144111 @default.
- W2021003221 cites W2077776048 @default.
- W2021003221 cites W2097703723 @default.
- W2021003221 cites W2097872774 @default.
- W2021003221 cites W2104093257 @default.
- W2021003221 cites W2106503792 @default.
- W2021003221 cites W2108502868 @default.
- W2021003221 cites W2111569598 @default.
- W2021003221 cites W2115601375 @default.
- W2021003221 cites W2121647436 @default.
- W2021003221 cites W2126973728 @default.
- W2021003221 cites W2130660124 @default.
- W2021003221 cites W2130941826 @default.
- W2021003221 cites W2132822263 @default.
- W2021003221 cites W2140223269 @default.
- W2021003221 cites W2147069236 @default.
- W2021003221 cites W2151736844 @default.
- W2021003221 cites W2155151262 @default.
- W2021003221 cites W2156743847 @default.
- W2021003221 cites W2160754664 @default.
- W2021003221 cites W2166168249 @default.
- W2021003221 cites W2166782149 @default.
- W2021003221 cites W4234882868 @default.
- W2021003221 cites W4243438336 @default.
- W2021003221 cites W87822204 @default.
- W2021003221 doi "https://doi.org/10.1109/tsmcb.2012.2192108" @default.
- W2021003221 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22547459" @default.
- W2021003221 hasPublicationYear "2012" @default.
- W2021003221 type Work @default.
- W2021003221 sameAs 2021003221 @default.
- W2021003221 citedByCount "94" @default.
- W2021003221 countsByYear W20210032212012 @default.
- W2021003221 countsByYear W20210032212013 @default.
- W2021003221 countsByYear W20210032212014 @default.
- W2021003221 countsByYear W20210032212015 @default.
- W2021003221 countsByYear W20210032212016 @default.
- W2021003221 countsByYear W20210032212017 @default.
- W2021003221 countsByYear W20210032212018 @default.
- W2021003221 countsByYear W20210032212019 @default.
- W2021003221 countsByYear W20210032212020 @default.
- W2021003221 countsByYear W20210032212022 @default.
- W2021003221 countsByYear W20210032212023 @default.
- W2021003221 crossrefType "journal-article" @default.
- W2021003221 hasAuthorship W2021003221A5005182563 @default.
- W2021003221 hasAuthorship W2021003221A5046543877 @default.
- W2021003221 hasAuthorship W2021003221A5050817770 @default.
- W2021003221 hasAuthorship W2021003221A5074103823 @default.
- W2021003221 hasConcept C111030470 @default.
- W2021003221 hasConcept C115961682 @default.
- W2021003221 hasConcept C138885662 @default.
- W2021003221 hasConcept C142816647 @default.
- W2021003221 hasConcept C153180895 @default.
- W2021003221 hasConcept C154945302 @default.
- W2021003221 hasConcept C15744967 @default.
- W2021003221 hasConcept C2524010 @default.
- W2021003221 hasConcept C26517878 @default.
- W2021003221 hasConcept C2776401178 @default.
- W2021003221 hasConcept C2780767217 @default.
- W2021003221 hasConcept C2780861071 @default.
- W2021003221 hasConcept C31972630 @default.
- W2021003221 hasConcept C33923547 @default.
- W2021003221 hasConcept C36464697 @default.
- W2021003221 hasConcept C38652104 @default.
- W2021003221 hasConcept C41008148 @default.
- W2021003221 hasConcept C41895202 @default.
- W2021003221 hasConcept C53533937 @default.
- W2021003221 hasConcept C542102704 @default.
- W2021003221 hasConcept C83665646 @default.
- W2021003221 hasConcept C97931131 @default.
- W2021003221 hasConceptScore W2021003221C111030470 @default.
- W2021003221 hasConceptScore W2021003221C115961682 @default.
- W2021003221 hasConceptScore W2021003221C138885662 @default.
- W2021003221 hasConceptScore W2021003221C142816647 @default.
- W2021003221 hasConceptScore W2021003221C153180895 @default.
- W2021003221 hasConceptScore W2021003221C154945302 @default.
- W2021003221 hasConceptScore W2021003221C15744967 @default.
- W2021003221 hasConceptScore W2021003221C2524010 @default.