Matches in SemOpenAlex for { <https://semopenalex.org/work/W2021010617> ?p ?o ?g. }
- W2021010617 endingPage "323" @default.
- W2021010617 startingPage "308" @default.
- W2021010617 abstract "Crustal anatexis, coupled with melt extraction and ascent, is the main mechanism by which the continental crust differentiates. During diffusion-controlled melting, and in the absence of melt flow and mechanical mixing, diffusion is the main process by which the melt phase ultimately homogenizes and mineral residuum and melt equilibrate. Knowing the diffusive properties of the elements within a granitoid melts is, therefore, essential for understanding the kinetics and mechanisms of melting, as well as the compositions and nature of chemical heterogeneities in granites. In this contribution we review a series of experimental studies aimed at an improved understanding of the nature and rates of chemical diffusion of major components of H2O-saturated granite melts at anatectic conditions in the continental crust. The hydrous granite system under investigation makes up ≈ 95–99% of natural, restite-free granitic magmas. These experimental results have applications for predicting the composition of granitic liquids during processes such as anatexis, magma mixing, assimilation or crystallization. Regarding the diffusive properties, the major elements of the liquid can be classified into two categories: those whose diffusion is uncoupled with other elements (e.g. Si); and others whose diffusion is highly coupled with the movement and gradients of other ions (e.g. Na and K with H; Na, K, Ca and H with Al). One implication of coupled diffusion is that chemical gradients in fast-diffusing ions, such as Na and K, may persist for long times in the melt due to their chemical coupling with slow-diffusing components, such as Al. The diffusion of components through granitic melts entails two mechanisms. “Local diffusion” corresponds to the classical view of chemical diffusion and refers to the relative and random motion of an ion (e.g. Si, Al) under apparently local gradients in chemical potential. “Field diffusion” corresponds to the long-range and coordinated migration of an ionic species (e.g. Na), driven by a long-range chemical potential gradient created by other melt components with which it associates due to coupled diffusion. This mechanism serves to erase compositional gradients at rates that are orders of magnitude greater than those by local diffusion. This is because the coordinated movement requires individual ions to move only a small fraction of the entire distance over which the chemical potential gradient is established, in order to achieve diffusion over distances that may span the entire liquid system. The significance and implications of major element diffusivities and the occurrence of coupled diffusion and field diffusion in granitic liquids, are highlighted by calculations of the rates of melt homogenization during anatexis of crustal protoliths." @default.
- W2021010617 created "2016-06-24" @default.
- W2021010617 creator A5022928276 @default.
- W2021010617 creator A5026960471 @default.
- W2021010617 creator A5045637236 @default.
- W2021010617 date "2012-11-01" @default.
- W2021010617 modified "2023-09-27" @default.
- W2021010617 title "Chemical diffusion of major components in granitic liquids: Implications for the rates of homogenization of crustal melts" @default.
- W2021010617 cites W1570943294 @default.
- W2021010617 cites W1608543503 @default.
- W2021010617 cites W1968392058 @default.
- W2021010617 cites W1971410845 @default.
- W2021010617 cites W1971892708 @default.
- W2021010617 cites W1978393424 @default.
- W2021010617 cites W1979052340 @default.
- W2021010617 cites W1984549726 @default.
- W2021010617 cites W1985139759 @default.
- W2021010617 cites W1993086472 @default.
- W2021010617 cites W1996581291 @default.
- W2021010617 cites W1996942400 @default.
- W2021010617 cites W1999207748 @default.
- W2021010617 cites W2001561775 @default.
- W2021010617 cites W2004683683 @default.
- W2021010617 cites W2006661518 @default.
- W2021010617 cites W2007389351 @default.
- W2021010617 cites W2010297118 @default.
- W2021010617 cites W2012279950 @default.
- W2021010617 cites W2026096968 @default.
- W2021010617 cites W2026871592 @default.
- W2021010617 cites W2029884420 @default.
- W2021010617 cites W2041291725 @default.
- W2021010617 cites W2043986474 @default.
- W2021010617 cites W2044984838 @default.
- W2021010617 cites W2046249360 @default.
- W2021010617 cites W2049866195 @default.
- W2021010617 cites W2051313052 @default.
- W2021010617 cites W2056974921 @default.
- W2021010617 cites W2064536888 @default.
- W2021010617 cites W2064675727 @default.
- W2021010617 cites W2066021947 @default.
- W2021010617 cites W2067031044 @default.
- W2021010617 cites W2075401440 @default.
- W2021010617 cites W2078007131 @default.
- W2021010617 cites W2085591881 @default.
- W2021010617 cites W2086535502 @default.
- W2021010617 cites W2089210477 @default.
- W2021010617 cites W2089369579 @default.
- W2021010617 cites W2092260452 @default.
- W2021010617 cites W2094101024 @default.
- W2021010617 cites W2102927140 @default.
- W2021010617 cites W2107088553 @default.
- W2021010617 cites W2108232562 @default.
- W2021010617 cites W2121615344 @default.
- W2021010617 cites W2127994322 @default.
- W2021010617 cites W2128812700 @default.
- W2021010617 cites W2131152383 @default.
- W2021010617 cites W2138981698 @default.
- W2021010617 cites W2156421165 @default.
- W2021010617 cites W2159047006 @default.
- W2021010617 cites W2160405777 @default.
- W2021010617 cites W2160780569 @default.
- W2021010617 cites W2161481750 @default.
- W2021010617 cites W2164546497 @default.
- W2021010617 cites W2172276300 @default.
- W2021010617 cites W2312095837 @default.
- W2021010617 cites W2318733152 @default.
- W2021010617 cites W2318986314 @default.
- W2021010617 cites W2322175449 @default.
- W2021010617 cites W2494585492 @default.
- W2021010617 cites W3194653550 @default.
- W2021010617 cites W4229781337 @default.
- W2021010617 cites W4240643818 @default.
- W2021010617 cites W4252363566 @default.
- W2021010617 doi "https://doi.org/10.1016/j.lithos.2012.06.017" @default.
- W2021010617 hasPublicationYear "2012" @default.
- W2021010617 type Work @default.
- W2021010617 sameAs 2021010617 @default.
- W2021010617 citedByCount "26" @default.
- W2021010617 countsByYear W20210106172013 @default.
- W2021010617 countsByYear W20210106172014 @default.
- W2021010617 countsByYear W20210106172015 @default.
- W2021010617 countsByYear W20210106172016 @default.
- W2021010617 countsByYear W20210106172017 @default.
- W2021010617 countsByYear W20210106172018 @default.
- W2021010617 countsByYear W20210106172019 @default.
- W2021010617 countsByYear W20210106172020 @default.
- W2021010617 countsByYear W20210106172021 @default.
- W2021010617 countsByYear W20210106172022 @default.
- W2021010617 countsByYear W20210106172023 @default.
- W2021010617 crossrefType "journal-article" @default.
- W2021010617 hasAuthorship W2021010617A5022928276 @default.
- W2021010617 hasAuthorship W2021010617A5026960471 @default.
- W2021010617 hasAuthorship W2021010617A5045637236 @default.
- W2021010617 hasConcept C121332964 @default.
- W2021010617 hasConcept C127313418 @default.
- W2021010617 hasConcept C130217890 @default.
- W2021010617 hasConcept C141646446 @default.
- W2021010617 hasConcept C149849071 @default.