Matches in SemOpenAlex for { <https://semopenalex.org/work/W2021034690> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W2021034690 abstract "ABSTRACT Medical images present a unique quality challenge to static document rendering technologies. The majority ofmedical images are noisy, low contrast, a mix of soft tissue and bone, and stored in diversified file formats. For these reasons,algorithm-based rendering, while efficient and effective for some images, can not always be relied on to achieve optimalimage quality. This paper describes a knowledge-based approach for managing many of these concerns while producing lowcost images.In attempting to manage ever rising medical costs, often efforts are directed toward controlling the increases inradiological costs associated with the acquisition, rendering, storage, and distribution of medical images. Most physician'shave at their disposal a battery of radiological tests (X-ray, CT, MRI, Ultrasound, Mammography, etc.) that are easilyperformed and frequently requested. The most common method for rendering the majority of these images is through a filmmedium. For technical as well as cost related reasons the medical industry must begin to consider a move from chemical-based film processing to other suitable technologies. True plain paper printouts are a viable alternative. This form of imagerendering is less expensive per copy, easily reproducible, and has a low initial equipment investment cost.The problem with plain paper images has always been that their quality is not comparable with that of film. Theresults of our study show that suitable, knowledge-based approaches to rendering medical images can be developed tosignificantly improve the quality of the printed image while maintaining a low cost profile.This paper describes an expert system's approach used to facilitate the rendering of radiological images for non-filmbased media. Comparisons of actual and modified histograms with their related images are used to demonstrate the tunablenature of this approach.Keywords: Medical Imaging, Image Processing, Knowledge Based system, Expert Systems, Digital Images, HistogramEqualization, Printed Images, Laser Printers" @default.
- W2021034690 created "2016-06-24" @default.
- W2021034690 creator A5046972357 @default.
- W2021034690 creator A5062078634 @default.
- W2021034690 creator A5070449502 @default.
- W2021034690 date "1997-05-07" @default.
- W2021034690 modified "2023-09-23" @default.
- W2021034690 title "<title>Knowledge-based system for rendering medical images</title>" @default.
- W2021034690 doi "https://doi.org/10.1117/12.273947" @default.
- W2021034690 hasPublicationYear "1997" @default.
- W2021034690 type Work @default.
- W2021034690 sameAs 2021034690 @default.
- W2021034690 citedByCount "0" @default.
- W2021034690 crossrefType "proceedings-article" @default.
- W2021034690 hasAuthorship W2021034690A5046972357 @default.
- W2021034690 hasAuthorship W2021034690A5062078634 @default.
- W2021034690 hasAuthorship W2021034690A5070449502 @default.
- W2021034690 hasConcept C115961682 @default.
- W2021034690 hasConcept C154945302 @default.
- W2021034690 hasConcept C205711294 @default.
- W2021034690 hasConcept C31601959 @default.
- W2021034690 hasConcept C31972630 @default.
- W2021034690 hasConcept C36816356 @default.
- W2021034690 hasConcept C41008148 @default.
- W2021034690 hasConcept C55020928 @default.
- W2021034690 hasConceptScore W2021034690C115961682 @default.
- W2021034690 hasConceptScore W2021034690C154945302 @default.
- W2021034690 hasConceptScore W2021034690C205711294 @default.
- W2021034690 hasConceptScore W2021034690C31601959 @default.
- W2021034690 hasConceptScore W2021034690C31972630 @default.
- W2021034690 hasConceptScore W2021034690C36816356 @default.
- W2021034690 hasConceptScore W2021034690C41008148 @default.
- W2021034690 hasConceptScore W2021034690C55020928 @default.
- W2021034690 hasLocation W20210346901 @default.
- W2021034690 hasOpenAccess W2021034690 @default.
- W2021034690 hasPrimaryLocation W20210346901 @default.
- W2021034690 hasRelatedWork W124301086 @default.
- W2021034690 hasRelatedWork W1493457311 @default.
- W2021034690 hasRelatedWork W1532920248 @default.
- W2021034690 hasRelatedWork W1556433190 @default.
- W2021034690 hasRelatedWork W2028528255 @default.
- W2021034690 hasRelatedWork W2029344139 @default.
- W2021034690 hasRelatedWork W2083511592 @default.
- W2021034690 hasRelatedWork W2101603314 @default.
- W2021034690 hasRelatedWork W2132668119 @default.
- W2021034690 hasRelatedWork W2187339677 @default.
- W2021034690 hasRelatedWork W2247264806 @default.
- W2021034690 hasRelatedWork W2268227884 @default.
- W2021034690 hasRelatedWork W2402416188 @default.
- W2021034690 hasRelatedWork W2483609670 @default.
- W2021034690 hasRelatedWork W2604849822 @default.
- W2021034690 hasRelatedWork W2754906674 @default.
- W2021034690 hasRelatedWork W2775024712 @default.
- W2021034690 hasRelatedWork W3183531128 @default.
- W2021034690 hasRelatedWork W2009626996 @default.
- W2021034690 hasRelatedWork W2828506846 @default.
- W2021034690 isParatext "false" @default.
- W2021034690 isRetracted "false" @default.
- W2021034690 magId "2021034690" @default.
- W2021034690 workType "article" @default.