Matches in SemOpenAlex for { <https://semopenalex.org/work/W2021050791> ?p ?o ?g. }
- W2021050791 endingPage "3148" @default.
- W2021050791 startingPage "3139" @default.
- W2021050791 abstract "Abstract Iron isotopic compositions measured in chondrules from various chondrites vary between δ57Fe/54Fe = +0.9‰ and −2.0‰, a larger range than for igneous rocks. Whether these compositions were inherited from chondrule precursors, resulted from the chondrule-forming process itself or were produced by later parent body alteration is as yet unclear. Since iron metal is a common phase in some chondrules, it is important to explore a possible link between the metal formation process and the observed iron isotope mass fractionation. In this experimental study we have heated a fayalite-rich composition under reducing conditions for heating times ranging from 2 min to 6 h. We performed chemical and iron isotope analyses of the product phases, iron metal and silicate glass. We demonstrated a lack of evaporation of Fe from the silicate melt in similar isothermal experiments performed under non-reducing conditions. Therefore, the measured isotopic mass fractionation in the glass, ranging between −0.32‰ and +3.0‰, is attributed to the reduction process. It is explained by the faster transport of lighter iron isotopes to the surface where reduction occurs, and is analogous to kinetic isotope fractionation observed in diffusion couples [Richter, F.M., Davis, A.M., Depaolo, D.J., Watson, E.B., 2003. Isotope fractionation by chemical diffusion between molten basalt and rhyolite. Geochim. Cosmochim. Acta 67, 3905–3923]. The metal phase contains 90–99.8% of the Fe in the system and lacks significant isotopic mass fractionation, with values remaining similar to that of the starting material throughout. The maximum iron isotope mass fractionation in the glass was achieved within 1 h and was followed by an isotopic exchange and re-equilibration with the metal phase (incomplete at ∼6 h). This study demonstrates that reduction of silicates at high temperatures can trigger iron isotopic fractionation comparable in its bulk range to that observed in chondrules. Furthermore, if metal in Type I chondrules was formed by reduction of Fe silicate, our observed isotopic fractionations constrain chondrule formation times to approximately 60 min, consistent with previous work." @default.
- W2021050791 created "2016-06-24" @default.
- W2021050791 creator A5011646113 @default.
- W2021050791 creator A5019317410 @default.
- W2021050791 creator A5033110755 @default.
- W2021050791 creator A5056003350 @default.
- W2021050791 creator A5057603441 @default.
- W2021050791 date "2006-06-01" @default.
- W2021050791 modified "2023-09-26" @default.
- W2021050791 title "Kinetic isotope effect during reduction of iron from a silicate melt" @default.
- W2021050791 cites W1488605369 @default.
- W2021050791 cites W1494472662 @default.
- W2021050791 cites W1513065817 @default.
- W2021050791 cites W1611051465 @default.
- W2021050791 cites W1625595805 @default.
- W2021050791 cites W1653334721 @default.
- W2021050791 cites W1965628007 @default.
- W2021050791 cites W1967595910 @default.
- W2021050791 cites W1987785271 @default.
- W2021050791 cites W1988551870 @default.
- W2021050791 cites W1995205715 @default.
- W2021050791 cites W2012620713 @default.
- W2021050791 cites W2015189938 @default.
- W2021050791 cites W2023900419 @default.
- W2021050791 cites W2037923444 @default.
- W2021050791 cites W2040934030 @default.
- W2021050791 cites W2046665560 @default.
- W2021050791 cites W2057683220 @default.
- W2021050791 cites W2060371138 @default.
- W2021050791 cites W2062790251 @default.
- W2021050791 cites W2065646049 @default.
- W2021050791 cites W2068338950 @default.
- W2021050791 cites W2075769430 @default.
- W2021050791 cites W2077407174 @default.
- W2021050791 cites W2077569091 @default.
- W2021050791 cites W2091395405 @default.
- W2021050791 cites W2092289821 @default.
- W2021050791 cites W2111626371 @default.
- W2021050791 cites W2120945229 @default.
- W2021050791 cites W2155256780 @default.
- W2021050791 cites W2158194328 @default.
- W2021050791 cites W3008765314 @default.
- W2021050791 cites W3012792376 @default.
- W2021050791 cites W3082730264 @default.
- W2021050791 cites W3104201271 @default.
- W2021050791 cites W3109412270 @default.
- W2021050791 cites W3110911357 @default.
- W2021050791 cites W316643697 @default.
- W2021050791 cites W3206730606 @default.
- W2021050791 doi "https://doi.org/10.1016/j.gca.2006.03.022" @default.
- W2021050791 hasPublicationYear "2006" @default.
- W2021050791 type Work @default.
- W2021050791 sameAs 2021050791 @default.
- W2021050791 citedByCount "8" @default.
- W2021050791 countsByYear W20210507912018 @default.
- W2021050791 crossrefType "journal-article" @default.
- W2021050791 hasAuthorship W2021050791A5011646113 @default.
- W2021050791 hasAuthorship W2021050791A5019317410 @default.
- W2021050791 hasAuthorship W2021050791A5033110755 @default.
- W2021050791 hasAuthorship W2021050791A5056003350 @default.
- W2021050791 hasAuthorship W2021050791A5057603441 @default.
- W2021050791 hasConcept C111335779 @default.
- W2021050791 hasConcept C121332964 @default.
- W2021050791 hasConcept C127413603 @default.
- W2021050791 hasConcept C135889238 @default.
- W2021050791 hasConcept C177322064 @default.
- W2021050791 hasConcept C178790620 @default.
- W2021050791 hasConcept C185592680 @default.
- W2021050791 hasConcept C192562407 @default.
- W2021050791 hasConcept C2524010 @default.
- W2021050791 hasConcept C2777335606 @default.
- W2021050791 hasConcept C33923547 @default.
- W2021050791 hasConcept C42360764 @default.
- W2021050791 hasConcept C58364064 @default.
- W2021050791 hasConcept C62520636 @default.
- W2021050791 hasConcept C69928629 @default.
- W2021050791 hasConceptScore W2021050791C111335779 @default.
- W2021050791 hasConceptScore W2021050791C121332964 @default.
- W2021050791 hasConceptScore W2021050791C127413603 @default.
- W2021050791 hasConceptScore W2021050791C135889238 @default.
- W2021050791 hasConceptScore W2021050791C177322064 @default.
- W2021050791 hasConceptScore W2021050791C178790620 @default.
- W2021050791 hasConceptScore W2021050791C185592680 @default.
- W2021050791 hasConceptScore W2021050791C192562407 @default.
- W2021050791 hasConceptScore W2021050791C2524010 @default.
- W2021050791 hasConceptScore W2021050791C2777335606 @default.
- W2021050791 hasConceptScore W2021050791C33923547 @default.
- W2021050791 hasConceptScore W2021050791C42360764 @default.
- W2021050791 hasConceptScore W2021050791C58364064 @default.
- W2021050791 hasConceptScore W2021050791C62520636 @default.
- W2021050791 hasConceptScore W2021050791C69928629 @default.
- W2021050791 hasIssue "12" @default.
- W2021050791 hasLocation W20210507911 @default.
- W2021050791 hasOpenAccess W2021050791 @default.
- W2021050791 hasPrimaryLocation W20210507911 @default.
- W2021050791 hasRelatedWork W1584687706 @default.
- W2021050791 hasRelatedWork W2015476443 @default.
- W2021050791 hasRelatedWork W2024577967 @default.