Matches in SemOpenAlex for { <https://semopenalex.org/work/W2021058801> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W2021058801 endingPage "135" @default.
- W2021058801 startingPage "129" @default.
- W2021058801 abstract "ON THE EXISTENCE AND CLASSIFICATION DIFFERENTIABLE ANDRE OF EMBEDDINGS HAEFLICER and MORRIS W. HIRSCH (Receked 3 Jnnunry 1963) sl. INTRODUCTION LET A4 be a compact /c-connected differential to prove, under suitable restrictions on k and the Euclidean space R’“-“-’ (Theorem (2.3)), of embeddings of 1M in R *“-’ if 1M is orientable Theorems (2.1) and (2.2) which reduce the immersions, and then applying A particular THEOREM n-manifold without boundary. Our object is II, an existence theorem for embedding IV in and a classification theorem for isotopy classes (Theorem (2.4)). This is done by first proving embedding problems to questions involving the theory of immersions case of (2.3) is the following: (I. 1). If n > 4, M is embeddable Whitney class p- in R 2n- 1 if and only if its normal Stiefel- ’ vanishes. Massey [5, 6, 71 has shown power of 2. Thus we obtain: that if P-l # 0, then M is non-orientable TIIEOREM (I .2). If n > 4 and A4 is orientable, M is embedable in R2”-‘. This is also true if n = 3; see [4]. The case n = 4 is unsolved, connected. embeddable However, in R5. Smale has proved (unpublished) and ?I is a that every even if M is simply homotopy 4-sphere is It should be remarked that the existence Theorems (2.1) and (2.3) apply to both orientable and non-orientable manifolds, but the classification Theorems (2.2) and (2.4) apply only to orientable manifolds. (1.3). DEFINITIONS AND NOTATION. All manifolds boundary of a manifold X is 2X. considered here are differential. The We put X - IYX = int X. An immersion of an n-manifold X in Euclidean r-space R” is a differentiable map f: A’-+ R” of rank n everywhere. An embedding is an immersion which is l- 1. If f and g are immersions of X in X”, a regular homotopy connectingfto g is a differentiable homotopy F: X x I+ R” such that F, = f, F, = g, and each F, is an immersion. If in addition each F, is an embedding, then F is an isotopy." @default.
- W2021058801 created "2016-06-24" @default.
- W2021058801 creator A5054703584 @default.
- W2021058801 creator A5065301352 @default.
- W2021058801 date "1963-01-01" @default.
- W2021058801 modified "2023-09-25" @default.
- W2021058801 title "On the existence and classification of differentiable embeddings" @default.
- W2021058801 cites W1980124684 @default.
- W2021058801 cites W1985324582 @default.
- W2021058801 cites W2056690023 @default.
- W2021058801 cites W2317883169 @default.
- W2021058801 cites W2323922728 @default.
- W2021058801 cites W2335238306 @default.
- W2021058801 cites W286300076 @default.
- W2021058801 cites W4205237800 @default.
- W2021058801 doi "https://doi.org/10.1016/0040-9383(63)90028-4" @default.
- W2021058801 hasPublicationYear "1963" @default.
- W2021058801 type Work @default.
- W2021058801 sameAs 2021058801 @default.
- W2021058801 citedByCount "50" @default.
- W2021058801 countsByYear W20210588012014 @default.
- W2021058801 countsByYear W20210588012015 @default.
- W2021058801 countsByYear W20210588012018 @default.
- W2021058801 countsByYear W20210588012019 @default.
- W2021058801 countsByYear W20210588012020 @default.
- W2021058801 countsByYear W20210588012022 @default.
- W2021058801 countsByYear W20210588012023 @default.
- W2021058801 crossrefType "journal-article" @default.
- W2021058801 hasAuthorship W2021058801A5054703584 @default.
- W2021058801 hasAuthorship W2021058801A5065301352 @default.
- W2021058801 hasBestOaLocation W20210588011 @default.
- W2021058801 hasConcept C202444582 @default.
- W2021058801 hasConcept C202615002 @default.
- W2021058801 hasConcept C33923547 @default.
- W2021058801 hasConceptScore W2021058801C202444582 @default.
- W2021058801 hasConceptScore W2021058801C202615002 @default.
- W2021058801 hasConceptScore W2021058801C33923547 @default.
- W2021058801 hasIssue "1-2" @default.
- W2021058801 hasLocation W20210588011 @default.
- W2021058801 hasLocation W20210588012 @default.
- W2021058801 hasOpenAccess W2021058801 @default.
- W2021058801 hasPrimaryLocation W20210588011 @default.
- W2021058801 hasRelatedWork W1582416669 @default.
- W2021058801 hasRelatedWork W1970594704 @default.
- W2021058801 hasRelatedWork W1977185169 @default.
- W2021058801 hasRelatedWork W1983366713 @default.
- W2021058801 hasRelatedWork W2081703167 @default.
- W2021058801 hasRelatedWork W2321250155 @default.
- W2021058801 hasRelatedWork W2326693593 @default.
- W2021058801 hasRelatedWork W2373677839 @default.
- W2021058801 hasRelatedWork W2963732783 @default.
- W2021058801 hasRelatedWork W4212900149 @default.
- W2021058801 hasVolume "2" @default.
- W2021058801 isParatext "false" @default.
- W2021058801 isRetracted "false" @default.
- W2021058801 magId "2021058801" @default.
- W2021058801 workType "article" @default.