Matches in SemOpenAlex for { <https://semopenalex.org/work/W2021063410> ?p ?o ?g. }
- W2021063410 abstract "Regionalized variables with discrete distributions are commonly associated with counts of individuals (precious stones in ore deposits, wild animals in ecosystems, trees in forests, etc.), that can be represented by a spatial point process. In this paper, we propose to model the point distribution by a Cox process, i.e., a Poisson point process with a random regionalized intensity. The model is parsimonious and versatile, as it allows fitting the histogram of the count variable, its variogram and madogram. Simulation conditional to data is performed by recourse to iterative algorithms based on the Gibbs sampler. Computer programs are provided for parameter inference and for simulation, and an application to a forestry dataset is presented." @default.
- W2021063410 created "2016-06-24" @default.
- W2021063410 creator A5001540398 @default.
- W2021063410 creator A5013876638 @default.
- W2021063410 date "2010-01-01" @default.
- W2021063410 modified "2023-09-26" @default.
- W2021063410 title "A computer package for modeling and simulating regionalized count variables" @default.
- W2021063410 cites W111399920 @default.
- W2021063410 cites W144526753 @default.
- W2021063410 cites W1483568680 @default.
- W2021063410 cites W1484319581 @default.
- W2021063410 cites W1495242428 @default.
- W2021063410 cites W1519516901 @default.
- W2021063410 cites W1548669759 @default.
- W2021063410 cites W1772403982 @default.
- W2021063410 cites W193386471 @default.
- W2021063410 cites W1965389325 @default.
- W2021063410 cites W1969704110 @default.
- W2021063410 cites W1972904509 @default.
- W2021063410 cites W1981890344 @default.
- W2021063410 cites W1983645263 @default.
- W2021063410 cites W1990303729 @default.
- W2021063410 cites W1993509103 @default.
- W2021063410 cites W1993614951 @default.
- W2021063410 cites W1994779094 @default.
- W2021063410 cites W2006489139 @default.
- W2021063410 cites W2010681211 @default.
- W2021063410 cites W2012084237 @default.
- W2021063410 cites W2020999234 @default.
- W2021063410 cites W2027792629 @default.
- W2021063410 cites W2030262940 @default.
- W2021063410 cites W2030597423 @default.
- W2021063410 cites W2038112825 @default.
- W2021063410 cites W2052762517 @default.
- W2021063410 cites W2056760934 @default.
- W2021063410 cites W2074282020 @default.
- W2021063410 cites W2081203149 @default.
- W2021063410 cites W2106812540 @default.
- W2021063410 cites W2137908017 @default.
- W2021063410 cites W2152828142 @default.
- W2021063410 cites W2155211246 @default.
- W2021063410 cites W2161075155 @default.
- W2021063410 cites W2282360389 @default.
- W2021063410 cites W2432517183 @default.
- W2021063410 cites W2482251642 @default.
- W2021063410 cites W2905296953 @default.
- W2021063410 cites W3004157836 @default.
- W2021063410 cites W3105734812 @default.
- W2021063410 cites W406998398 @default.
- W2021063410 cites W89812392 @default.
- W2021063410 cites W9858259 @default.
- W2021063410 cites W2488395402 @default.
- W2021063410 doi "https://doi.org/10.1016/j.cageo.2009.04.013" @default.
- W2021063410 hasPublicationYear "2010" @default.
- W2021063410 type Work @default.
- W2021063410 sameAs 2021063410 @default.
- W2021063410 citedByCount "1" @default.
- W2021063410 countsByYear W20210634102012 @default.
- W2021063410 crossrefType "journal-article" @default.
- W2021063410 hasAuthorship W2021063410A5001540398 @default.
- W2021063410 hasAuthorship W2021063410A5013876638 @default.
- W2021063410 hasConcept C100906024 @default.
- W2021063410 hasConcept C105795698 @default.
- W2021063410 hasConcept C111919701 @default.
- W2021063410 hasConcept C11413529 @default.
- W2021063410 hasConcept C115961682 @default.
- W2021063410 hasConcept C119857082 @default.
- W2021063410 hasConcept C124101348 @default.
- W2021063410 hasConcept C134306372 @default.
- W2021063410 hasConcept C154881674 @default.
- W2021063410 hasConcept C154945302 @default.
- W2021063410 hasConcept C155051063 @default.
- W2021063410 hasConcept C166144826 @default.
- W2021063410 hasConcept C182365436 @default.
- W2021063410 hasConcept C2776214188 @default.
- W2021063410 hasConcept C33643355 @default.
- W2021063410 hasConcept C33923547 @default.
- W2021063410 hasConcept C41008148 @default.
- W2021063410 hasConcept C53533937 @default.
- W2021063410 hasConcept C81692654 @default.
- W2021063410 hasConcept C88871306 @default.
- W2021063410 hasConcept C98045186 @default.
- W2021063410 hasConceptScore W2021063410C100906024 @default.
- W2021063410 hasConceptScore W2021063410C105795698 @default.
- W2021063410 hasConceptScore W2021063410C111919701 @default.
- W2021063410 hasConceptScore W2021063410C11413529 @default.
- W2021063410 hasConceptScore W2021063410C115961682 @default.
- W2021063410 hasConceptScore W2021063410C119857082 @default.
- W2021063410 hasConceptScore W2021063410C124101348 @default.
- W2021063410 hasConceptScore W2021063410C134306372 @default.
- W2021063410 hasConceptScore W2021063410C154881674 @default.
- W2021063410 hasConceptScore W2021063410C154945302 @default.
- W2021063410 hasConceptScore W2021063410C155051063 @default.
- W2021063410 hasConceptScore W2021063410C166144826 @default.
- W2021063410 hasConceptScore W2021063410C182365436 @default.
- W2021063410 hasConceptScore W2021063410C2776214188 @default.
- W2021063410 hasConceptScore W2021063410C33643355 @default.
- W2021063410 hasConceptScore W2021063410C33923547 @default.
- W2021063410 hasConceptScore W2021063410C41008148 @default.
- W2021063410 hasConceptScore W2021063410C53533937 @default.