Matches in SemOpenAlex for { <https://semopenalex.org/work/W2021073072> ?p ?o ?g. }
- W2021073072 endingPage "2202" @default.
- W2021073072 startingPage "2185" @default.
- W2021073072 abstract "Temperature of the surface layer of temperate lakes is reconstructed by means of a simplified model on the basis of air temperature alone. The comparison between calculated and observed data shows a remarkable agreement (Nash–Sutcliffe efficiency indices always larger than 0.87, mean absolute errors of approximately 1°C) for all 14 lakes investigated (Mara, Sparkling, Superior, Michigan, Huron, Erie, Ontario, Biel, Zurich, Constance, Garda, Neusiedl, Balaton, and Baikal, in west-to-east order), which present a wide range of morphological and hydrological characteristics. Differently from a pure heat flux balance approach, where the different fluxes are determined on the basis of independent relationships, the input data directly inform parameters of a simple model that, in turn, provides meaningful information about the properties of the real system. The dependence of the model parameters on the main morphological indicators is presented, which allows for a quantitative description of the strong influence of the mean depth of the lake on the thermal inertia and the hysteresis pattern between air and lake surface temperatures." @default.
- W2021073072 created "2016-06-24" @default.
- W2021073072 creator A5013165034 @default.
- W2021073072 creator A5022147470 @default.
- W2021073072 creator A5024736221 @default.
- W2021073072 creator A5037818943 @default.
- W2021073072 creator A5053509213 @default.
- W2021073072 creator A5072296981 @default.
- W2021073072 creator A5084695846 @default.
- W2021073072 date "2014-10-12" @default.
- W2021073072 modified "2023-10-07" @default.
- W2021073072 title "Prediction of surface temperature in lakes with different morphology using air temperature" @default.
- W2021073072 cites W1502615717 @default.
- W2021073072 cites W1587725326 @default.
- W2021073072 cites W1600236695 @default.
- W2021073072 cites W1863078585 @default.
- W2021073072 cites W1970586252 @default.
- W2021073072 cites W1981679261 @default.
- W2021073072 cites W1991248828 @default.
- W2021073072 cites W1995918676 @default.
- W2021073072 cites W2033904036 @default.
- W2021073072 cites W2045365231 @default.
- W2021073072 cites W2046238125 @default.
- W2021073072 cites W2046431283 @default.
- W2021073072 cites W2048487157 @default.
- W2021073072 cites W2049251006 @default.
- W2021073072 cites W2065578849 @default.
- W2021073072 cites W2076732124 @default.
- W2021073072 cites W2083648714 @default.
- W2021073072 cites W2093477942 @default.
- W2021073072 cites W2094378139 @default.
- W2021073072 cites W2103810495 @default.
- W2021073072 cites W2106295761 @default.
- W2021073072 cites W2112788050 @default.
- W2021073072 cites W2121291834 @default.
- W2021073072 cites W2124738823 @default.
- W2021073072 cites W2124998673 @default.
- W2021073072 cites W2135134353 @default.
- W2021073072 cites W85401036 @default.
- W2021073072 doi "https://doi.org/10.4319/lo.2014.59.6.2185" @default.
- W2021073072 hasPublicationYear "2014" @default.
- W2021073072 type Work @default.
- W2021073072 sameAs 2021073072 @default.
- W2021073072 citedByCount "97" @default.
- W2021073072 countsByYear W20210730722015 @default.
- W2021073072 countsByYear W20210730722016 @default.
- W2021073072 countsByYear W20210730722017 @default.
- W2021073072 countsByYear W20210730722018 @default.
- W2021073072 countsByYear W20210730722019 @default.
- W2021073072 countsByYear W20210730722020 @default.
- W2021073072 countsByYear W20210730722021 @default.
- W2021073072 countsByYear W20210730722022 @default.
- W2021073072 countsByYear W20210730722023 @default.
- W2021073072 crossrefType "journal-article" @default.
- W2021073072 hasAuthorship W2021073072A5013165034 @default.
- W2021073072 hasAuthorship W2021073072A5022147470 @default.
- W2021073072 hasAuthorship W2021073072A5024736221 @default.
- W2021073072 hasAuthorship W2021073072A5037818943 @default.
- W2021073072 hasAuthorship W2021073072A5053509213 @default.
- W2021073072 hasAuthorship W2021073072A5072296981 @default.
- W2021073072 hasAuthorship W2021073072A5084695846 @default.
- W2021073072 hasBestOaLocation W20210730722 @default.
- W2021073072 hasConcept C110407247 @default.
- W2021073072 hasConcept C121332964 @default.
- W2021073072 hasConcept C123299182 @default.
- W2021073072 hasConcept C127313418 @default.
- W2021073072 hasConcept C153294291 @default.
- W2021073072 hasConcept C159985019 @default.
- W2021073072 hasConcept C178790620 @default.
- W2021073072 hasConcept C185592680 @default.
- W2021073072 hasConcept C187320778 @default.
- W2021073072 hasConcept C18903297 @default.
- W2021073072 hasConcept C192562407 @default.
- W2021073072 hasConcept C204323151 @default.
- W2021073072 hasConcept C204530211 @default.
- W2021073072 hasConcept C205649164 @default.
- W2021073072 hasConcept C2983363897 @default.
- W2021073072 hasConcept C2984722928 @default.
- W2021073072 hasConcept C39432304 @default.
- W2021073072 hasConcept C62520636 @default.
- W2021073072 hasConcept C68709404 @default.
- W2021073072 hasConcept C74650414 @default.
- W2021073072 hasConcept C76886044 @default.
- W2021073072 hasConcept C81461190 @default.
- W2021073072 hasConcept C86803240 @default.
- W2021073072 hasConcept C91586092 @default.
- W2021073072 hasConceptScore W2021073072C110407247 @default.
- W2021073072 hasConceptScore W2021073072C121332964 @default.
- W2021073072 hasConceptScore W2021073072C123299182 @default.
- W2021073072 hasConceptScore W2021073072C127313418 @default.
- W2021073072 hasConceptScore W2021073072C153294291 @default.
- W2021073072 hasConceptScore W2021073072C159985019 @default.
- W2021073072 hasConceptScore W2021073072C178790620 @default.
- W2021073072 hasConceptScore W2021073072C185592680 @default.
- W2021073072 hasConceptScore W2021073072C187320778 @default.
- W2021073072 hasConceptScore W2021073072C18903297 @default.
- W2021073072 hasConceptScore W2021073072C192562407 @default.
- W2021073072 hasConceptScore W2021073072C204323151 @default.