Matches in SemOpenAlex for { <https://semopenalex.org/work/W2021104493> ?p ?o ?g. }
- W2021104493 endingPage "549" @default.
- W2021104493 startingPage "540" @default.
- W2021104493 abstract "This paper examines the linkage of crude oil market (WTI) and stock markets of the G-7 countries. We study the mean and volatility spillovers of oil and stock market prices over various time horizons. We propose a new approach incorporating both multivariate GARCH models and wavelet analysis: wavelet-based MGARCH approach. We combine a bivariate GARCH-BEKK model with wavelet multiresolution analysis in order to capture the multiscale features of mean and volatility spillovers between time series. For optimal portfolio allocation decisions, we analyze the multiscale behavior of hedge ratio. Empirical results show strong evidence of significant volatility spillovers between oil and stock markets, as well as time-varying correlations for various market pairs. However, results of wavelet coherence indicate that in most, the WTI market was leading. In addition, it is stated that the decomposed volatility spillovers permit investors to adapt their hedging strategies." @default.
- W2021104493 created "2016-06-24" @default.
- W2021104493 creator A5007523531 @default.
- W2021104493 creator A5036971141 @default.
- W2021104493 creator A5047078908 @default.
- W2021104493 date "2015-05-01" @default.
- W2021104493 modified "2023-10-14" @default.
- W2021104493 title "Analyzing volatility spillovers and hedging between oil and stock markets: Evidence from wavelet analysis" @default.
- W2021104493 cites W1972911366 @default.
- W2021104493 cites W1975717799 @default.
- W2021104493 cites W1977480757 @default.
- W2021104493 cites W1980795755 @default.
- W2021104493 cites W1990475559 @default.
- W2021104493 cites W1994547093 @default.
- W2021104493 cites W1996432790 @default.
- W2021104493 cites W2007171804 @default.
- W2021104493 cites W2007528270 @default.
- W2021104493 cites W2008663225 @default.
- W2021104493 cites W2021821837 @default.
- W2021104493 cites W2024441716 @default.
- W2021104493 cites W2025810522 @default.
- W2021104493 cites W2028726096 @default.
- W2021104493 cites W2033911870 @default.
- W2021104493 cites W2037126904 @default.
- W2021104493 cites W2043510043 @default.
- W2021104493 cites W2048163607 @default.
- W2021104493 cites W2048373198 @default.
- W2021104493 cites W2051330115 @default.
- W2021104493 cites W2052775749 @default.
- W2021104493 cites W2053176629 @default.
- W2021104493 cites W2056765544 @default.
- W2021104493 cites W2072796675 @default.
- W2021104493 cites W2079493819 @default.
- W2021104493 cites W2081463827 @default.
- W2021104493 cites W2082296583 @default.
- W2021104493 cites W2083902262 @default.
- W2021104493 cites W2087267491 @default.
- W2021104493 cites W2098027073 @default.
- W2021104493 cites W2132984323 @default.
- W2021104493 cites W2261663051 @default.
- W2021104493 cites W3121377246 @default.
- W2021104493 cites W59771946 @default.
- W2021104493 doi "https://doi.org/10.1016/j.eneco.2015.03.023" @default.
- W2021104493 hasPublicationYear "2015" @default.
- W2021104493 type Work @default.
- W2021104493 sameAs 2021104493 @default.
- W2021104493 citedByCount "199" @default.
- W2021104493 countsByYear W20211044932015 @default.
- W2021104493 countsByYear W20211044932016 @default.
- W2021104493 countsByYear W20211044932017 @default.
- W2021104493 countsByYear W20211044932018 @default.
- W2021104493 countsByYear W20211044932019 @default.
- W2021104493 countsByYear W20211044932020 @default.
- W2021104493 countsByYear W20211044932021 @default.
- W2021104493 countsByYear W20211044932022 @default.
- W2021104493 countsByYear W20211044932023 @default.
- W2021104493 crossrefType "journal-article" @default.
- W2021104493 hasAuthorship W2021104493A5007523531 @default.
- W2021104493 hasAuthorship W2021104493A5036971141 @default.
- W2021104493 hasAuthorship W2021104493A5047078908 @default.
- W2021104493 hasConcept C105795698 @default.
- W2021104493 hasConcept C106159729 @default.
- W2021104493 hasConcept C127413603 @default.
- W2021104493 hasConcept C13290067 @default.
- W2021104493 hasConcept C149782125 @default.
- W2021104493 hasConcept C151730666 @default.
- W2021104493 hasConcept C154945302 @default.
- W2021104493 hasConcept C162324750 @default.
- W2021104493 hasConcept C204036174 @default.
- W2021104493 hasConcept C2780299701 @default.
- W2021104493 hasConcept C2780762169 @default.
- W2021104493 hasConcept C2780821815 @default.
- W2021104493 hasConcept C33923547 @default.
- W2021104493 hasConcept C41008148 @default.
- W2021104493 hasConcept C47432892 @default.
- W2021104493 hasConcept C64341305 @default.
- W2021104493 hasConcept C70784835 @default.
- W2021104493 hasConcept C78519656 @default.
- W2021104493 hasConcept C85393063 @default.
- W2021104493 hasConcept C86803240 @default.
- W2021104493 hasConcept C91602232 @default.
- W2021104493 hasConceptScore W2021104493C105795698 @default.
- W2021104493 hasConceptScore W2021104493C106159729 @default.
- W2021104493 hasConceptScore W2021104493C127413603 @default.
- W2021104493 hasConceptScore W2021104493C13290067 @default.
- W2021104493 hasConceptScore W2021104493C149782125 @default.
- W2021104493 hasConceptScore W2021104493C151730666 @default.
- W2021104493 hasConceptScore W2021104493C154945302 @default.
- W2021104493 hasConceptScore W2021104493C162324750 @default.
- W2021104493 hasConceptScore W2021104493C204036174 @default.
- W2021104493 hasConceptScore W2021104493C2780299701 @default.
- W2021104493 hasConceptScore W2021104493C2780762169 @default.
- W2021104493 hasConceptScore W2021104493C2780821815 @default.
- W2021104493 hasConceptScore W2021104493C33923547 @default.
- W2021104493 hasConceptScore W2021104493C41008148 @default.
- W2021104493 hasConceptScore W2021104493C47432892 @default.
- W2021104493 hasConceptScore W2021104493C64341305 @default.
- W2021104493 hasConceptScore W2021104493C70784835 @default.