Matches in SemOpenAlex for { <https://semopenalex.org/work/W2021105003> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2021105003 endingPage "778" @default.
- W2021105003 startingPage "766" @default.
- W2021105003 abstract "A new cell model for classical particle systems is presented and analyzed. In this model the particles are confined to congruent, interconnected, cubic cells of volume ω centered on the points of a cubic lattice with lattice spacing 1/γ. The particles interact via a 2-body potential of the form q(r) + ω−1K(γr). The paper deals with the limiting form of this model in which the cells are very large but their separation is much larger. The free energy density is defined by a(ρ,T)≡lim lim ω→∞lim lim γ→0ã(ρ,T,γ,ω),where ã(ρ, T, γ, ω) is the free energy density at density ρ, temperature T, and arbitrary γ and ω. For a very general class of functions q and K, it is proved that a(ρ, T) is given by a variational principle. For a certain class of functions K (including K ≤ 0), a(ρ, T) is given by the Lebowitz-Penrose generalization of the van der Waals-Maxwell theory. For a different class of functions K the system has crystalline states. When K is chosen so that only particles in nearest-neighbor cells interact and K is isotropic, it is proved that the most general crystalline state of the system has a density distribution with two values ρ+ and ρ− arranged in a checkerboard (sodium chloride) pattern. For the special case with K repulsive, K(0) = 0 and q = 0, the system has a second-order melting transition from a crystalline to a fluid state, with no critical temperature. Various correlation functions are defined and evaluated. In the 1-dimensional nearest-neighbor case, the results include exact versions of the Ornstein-Zernike theory for both fluid and crystalline states. Magnetic systems are also considered. Different special cases of the model yield precisely the Weiss theory of ferromagnetism and the Néel-van Vleck theory of antiferromagnetism." @default.
- W2021105003 created "2016-06-24" @default.
- W2021105003 creator A5068108211 @default.
- W2021105003 date "1971-05-01" @default.
- W2021105003 modified "2023-09-26" @default.
- W2021105003 title "Exactly Solvable Cell Model with a Melting Transition" @default.
- W2021105003 cites W1972165967 @default.
- W2021105003 cites W1987143995 @default.
- W2021105003 cites W1993284757 @default.
- W2021105003 cites W2000110604 @default.
- W2021105003 cites W2002523846 @default.
- W2021105003 cites W2014092535 @default.
- W2021105003 cites W2014864568 @default.
- W2021105003 cites W2016827519 @default.
- W2021105003 cites W2018175666 @default.
- W2021105003 cites W2058877795 @default.
- W2021105003 cites W2062145516 @default.
- W2021105003 cites W2074042625 @default.
- W2021105003 cites W2080324381 @default.
- W2021105003 cites W2081071325 @default.
- W2021105003 cites W2095508411 @default.
- W2021105003 cites W2106062013 @default.
- W2021105003 cites W2142751565 @default.
- W2021105003 cites W2918115483 @default.
- W2021105003 cites W4367662401 @default.
- W2021105003 doi "https://doi.org/10.1063/1.1665645" @default.
- W2021105003 hasPublicationYear "1971" @default.
- W2021105003 type Work @default.
- W2021105003 sameAs 2021105003 @default.
- W2021105003 citedByCount "7" @default.
- W2021105003 crossrefType "journal-article" @default.
- W2021105003 hasAuthorship W2021105003A5068108211 @default.
- W2021105003 hasConcept C113238511 @default.
- W2021105003 hasConcept C114614502 @default.
- W2021105003 hasConcept C121332964 @default.
- W2021105003 hasConcept C126061179 @default.
- W2021105003 hasConcept C154945302 @default.
- W2021105003 hasConcept C184050105 @default.
- W2021105003 hasConcept C24890656 @default.
- W2021105003 hasConcept C26873012 @default.
- W2021105003 hasConcept C2781204021 @default.
- W2021105003 hasConcept C32909587 @default.
- W2021105003 hasConcept C33923547 @default.
- W2021105003 hasConcept C37914503 @default.
- W2021105003 hasConcept C41008148 @default.
- W2021105003 hasConcept C62520636 @default.
- W2021105003 hasConcept C69523127 @default.
- W2021105003 hasConceptScore W2021105003C113238511 @default.
- W2021105003 hasConceptScore W2021105003C114614502 @default.
- W2021105003 hasConceptScore W2021105003C121332964 @default.
- W2021105003 hasConceptScore W2021105003C126061179 @default.
- W2021105003 hasConceptScore W2021105003C154945302 @default.
- W2021105003 hasConceptScore W2021105003C184050105 @default.
- W2021105003 hasConceptScore W2021105003C24890656 @default.
- W2021105003 hasConceptScore W2021105003C26873012 @default.
- W2021105003 hasConceptScore W2021105003C2781204021 @default.
- W2021105003 hasConceptScore W2021105003C32909587 @default.
- W2021105003 hasConceptScore W2021105003C33923547 @default.
- W2021105003 hasConceptScore W2021105003C37914503 @default.
- W2021105003 hasConceptScore W2021105003C41008148 @default.
- W2021105003 hasConceptScore W2021105003C62520636 @default.
- W2021105003 hasConceptScore W2021105003C69523127 @default.
- W2021105003 hasIssue "5" @default.
- W2021105003 hasLocation W20211050031 @default.
- W2021105003 hasOpenAccess W2021105003 @default.
- W2021105003 hasPrimaryLocation W20211050031 @default.
- W2021105003 hasRelatedWork W1972361155 @default.
- W2021105003 hasRelatedWork W1975206839 @default.
- W2021105003 hasRelatedWork W2015889300 @default.
- W2021105003 hasRelatedWork W2016334550 @default.
- W2021105003 hasRelatedWork W2044361722 @default.
- W2021105003 hasRelatedWork W2086117035 @default.
- W2021105003 hasRelatedWork W2093674548 @default.
- W2021105003 hasRelatedWork W2325565997 @default.
- W2021105003 hasRelatedWork W2912566525 @default.
- W2021105003 hasRelatedWork W3099504480 @default.
- W2021105003 hasVolume "12" @default.
- W2021105003 isParatext "false" @default.
- W2021105003 isRetracted "false" @default.
- W2021105003 magId "2021105003" @default.
- W2021105003 workType "article" @default.