Matches in SemOpenAlex for { <https://semopenalex.org/work/W2021108542> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2021108542 endingPage "1148" @default.
- W2021108542 startingPage "1138" @default.
- W2021108542 abstract "We investigate the dissociation rate of a dilute solution of diatomic molecules in an inert gas. The diatomic molecule is assumed to dissociate when its vibrational energy exceeds the dissociation energy $E$. A classical impulsive collision model is used for the interaction between the diatomic molecules and the solvent gas which is treated as a temperature bath at temperature $T$. The diatomic molecule is also simplified by treating it as one dimensional, thus neglecting the rotational degrees of freedom, and assuming that its translational degree of freedom is always in equilibrium when it is not neglected entirely. Still further simplification is achieved by considering only cases where the effect of the solvent gas may be represented by a transition rate between the vibrational energy states of the diatomic molecule, and the distribution function for vibrational energies $ensuremath{epsilon}ensuremath{leqq}E$ is approximately given by the equilibrium distribution ${F}_{0}(ensuremath{epsilon})$. We find generally (i.e., when the assumptions stated in the last sentence hold, but independent of our model) that when a diatomic molecule with vibrational energy $E$ is very likely to lose (rather than gain) energy in a collision with a gas atom, the dissociation rate $k(E)$ is given by the expression $k(E)={ensuremath{beta}}^{ensuremath{-}1}{[ensuremath{tau}(E)]}^{ensuremath{-}1}{F}_{0}(E)$, where $ensuremath{tau}(E)$ is the mean time between collisions for a molecule with vibrational energy $E$ and ${ensuremath{beta}}^{ensuremath{-}1}$ is Boltzmann's constant times $T$. For the model considered in this paper, this will be the case when $Eensuremath{gg}{(ensuremath{gamma}ensuremath{beta})}^{ensuremath{-}1}$ where $ensuremath{gamma}$ is the ratio of the mass of a gas atom to that of a diatomic molecule. The expression for $k(E)$ then assumes the simple form, $k(E)=ensuremath{alpha}mathrm{Ac}{ensuremath{beta}}^{ensuremath{-}1}{e}^{ensuremath{-}ensuremath{beta}E}[frac{mathcal{a}(E)}{Z(E)}],$ where $A$ is the cross-sectional area for a collision, $c$ is the concentration of gas atoms, $Z(E)$ is the vibrational partition function for the bound states, $mathcal{a}(E)$ is the distance between the minimum and maximum value of the vibrational coordinate when the molecule is on the threshold of dissociation, and $ensuremath{alpha}$ is a constant of order unity. We also treat the case when $ensuremath{gamma}ensuremath{ll}1$, which leads to a Fokker-Planck type equation for the distribution function from which $k(E)$ is found for $ensuremath{beta}Eensuremath{gg}1$. A quasi-quantum-mechanical calculation for $k(E)$ is also presented and leads to the same results as the classical calculation." @default.
- W2021108542 created "2016-06-24" @default.
- W2021108542 creator A5051790406 @default.
- W2021108542 creator A5088773034 @default.
- W2021108542 date "1963-08-01" @default.
- W2021108542 modified "2023-09-24" @default.
- W2021108542 title "Impulsive Collision Model for the Dissociation of Diatomic Molecules" @default.
- W2021108542 cites W1972709158 @default.
- W2021108542 cites W1981831915 @default.
- W2021108542 cites W1988797267 @default.
- W2021108542 cites W2039029249 @default.
- W2021108542 cites W2046423458 @default.
- W2021108542 cites W2048194998 @default.
- W2021108542 cites W2051415161 @default.
- W2021108542 cites W2085266415 @default.
- W2021108542 cites W2093416385 @default.
- W2021108542 cites W2162488624 @default.
- W2021108542 cites W2335706001 @default.
- W2021108542 cites W2567202036 @default.
- W2021108542 doi "https://doi.org/10.1103/physrev.131.1138" @default.
- W2021108542 hasPublicationYear "1963" @default.
- W2021108542 type Work @default.
- W2021108542 sameAs 2021108542 @default.
- W2021108542 citedByCount "23" @default.
- W2021108542 crossrefType "journal-article" @default.
- W2021108542 hasAuthorship W2021108542A5051790406 @default.
- W2021108542 hasAuthorship W2021108542A5088773034 @default.
- W2021108542 hasConcept C102931765 @default.
- W2021108542 hasConcept C111806078 @default.
- W2021108542 hasConcept C121332964 @default.
- W2021108542 hasConcept C147789679 @default.
- W2021108542 hasConcept C181500209 @default.
- W2021108542 hasConcept C184779094 @default.
- W2021108542 hasConcept C185592680 @default.
- W2021108542 hasConcept C193999330 @default.
- W2021108542 hasConcept C2779712033 @default.
- W2021108542 hasConcept C2993504562 @default.
- W2021108542 hasConcept C32909587 @default.
- W2021108542 hasConcept C62396407 @default.
- W2021108542 hasConcept C62520636 @default.
- W2021108542 hasConcept C97355855 @default.
- W2021108542 hasConceptScore W2021108542C102931765 @default.
- W2021108542 hasConceptScore W2021108542C111806078 @default.
- W2021108542 hasConceptScore W2021108542C121332964 @default.
- W2021108542 hasConceptScore W2021108542C147789679 @default.
- W2021108542 hasConceptScore W2021108542C181500209 @default.
- W2021108542 hasConceptScore W2021108542C184779094 @default.
- W2021108542 hasConceptScore W2021108542C185592680 @default.
- W2021108542 hasConceptScore W2021108542C193999330 @default.
- W2021108542 hasConceptScore W2021108542C2779712033 @default.
- W2021108542 hasConceptScore W2021108542C2993504562 @default.
- W2021108542 hasConceptScore W2021108542C32909587 @default.
- W2021108542 hasConceptScore W2021108542C62396407 @default.
- W2021108542 hasConceptScore W2021108542C62520636 @default.
- W2021108542 hasConceptScore W2021108542C97355855 @default.
- W2021108542 hasIssue "3" @default.
- W2021108542 hasLocation W20211085421 @default.
- W2021108542 hasOpenAccess W2021108542 @default.
- W2021108542 hasPrimaryLocation W20211085421 @default.
- W2021108542 hasRelatedWork W1989566617 @default.
- W2021108542 hasRelatedWork W2017642879 @default.
- W2021108542 hasRelatedWork W2052126990 @default.
- W2021108542 hasRelatedWork W2090108547 @default.
- W2021108542 hasRelatedWork W2348007858 @default.
- W2021108542 hasRelatedWork W2350609969 @default.
- W2021108542 hasRelatedWork W2354071861 @default.
- W2021108542 hasRelatedWork W2364534487 @default.
- W2021108542 hasRelatedWork W2374217504 @default.
- W2021108542 hasRelatedWork W2376084991 @default.
- W2021108542 hasVolume "131" @default.
- W2021108542 isParatext "false" @default.
- W2021108542 isRetracted "false" @default.
- W2021108542 magId "2021108542" @default.
- W2021108542 workType "article" @default.