Matches in SemOpenAlex for { <https://semopenalex.org/work/W2021166720> ?p ?o ?g. }
- W2021166720 endingPage "3319" @default.
- W2021166720 startingPage "3302" @default.
- W2021166720 abstract "Spectral clustering involves placing objects into clusters based on the eigenvectors and eigenvalues of an associated matrix. The technique was first applied to molecular data by Brewer [J. Chem. Inf. Model. 2007, 47, 1727-1733] who demonstrated its use on a very small dataset of 125 COX-2 inhibitors. We have determined suitable parameters for spectral clustering using a wide variety of molecular descriptors and several datasets of a few thousand compounds and compared the results of clustering using a nonoverlapping version of Brewer's use of Sarker and Boyer's algorithm with that of Ward's and k-means clustering. We then replaced the exact eigendecomposition method with two different approximate methods and concluded that Singular Value Decomposition is the most appropriate method for clustering larger compound collections of up to 100,000 compounds. We have also used spectral clustering with the Tversky coefficient to generate two sets of clusters linked by a common set of eigenvalues and have used this novel approach to cluster sets of fragments such as those used in fragment-based drug design." @default.
- W2021166720 created "2016-06-24" @default.
- W2021166720 creator A5030046388 @default.
- W2021166720 creator A5077475197 @default.
- W2021166720 creator A5080058129 @default.
- W2021166720 creator A5089239122 @default.
- W2021166720 date "2014-12-02" @default.
- W2021166720 modified "2023-09-23" @default.
- W2021166720 title "Investigation of the Use of Spectral Clustering for the Analysis of Molecular Data" @default.
- W2021166720 cites W1531524766 @default.
- W2021166720 cites W1969787942 @default.
- W2021166720 cites W1972882176 @default.
- W2021166720 cites W1981029985 @default.
- W2021166720 cites W1983332050 @default.
- W2021166720 cites W1987172967 @default.
- W2021166720 cites W1987971958 @default.
- W2021166720 cites W1988037271 @default.
- W2021166720 cites W1992418208 @default.
- W2021166720 cites W1997996331 @default.
- W2021166720 cites W2001054421 @default.
- W2021166720 cites W2005008560 @default.
- W2021166720 cites W2016381774 @default.
- W2021166720 cites W2030995892 @default.
- W2021166720 cites W2038310963 @default.
- W2021166720 cites W2048541418 @default.
- W2021166720 cites W2059586807 @default.
- W2021166720 cites W2065263819 @default.
- W2021166720 cites W2086028466 @default.
- W2021166720 cites W2090520369 @default.
- W2021166720 cites W2091707780 @default.
- W2021166720 cites W2094493457 @default.
- W2021166720 cites W2096541451 @default.
- W2021166720 cites W2098794639 @default.
- W2021166720 cites W2109777943 @default.
- W2021166720 cites W2110734043 @default.
- W2021166720 cites W2112912103 @default.
- W2021166720 cites W2117686912 @default.
- W2021166720 cites W2121374178 @default.
- W2021166720 cites W2121947440 @default.
- W2021166720 cites W2200017991 @default.
- W2021166720 cites W2499278971 @default.
- W2021166720 cites W2949435151 @default.
- W2021166720 cites W4301014558 @default.
- W2021166720 doi "https://doi.org/10.1021/ci500480b" @default.
- W2021166720 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25379955" @default.
- W2021166720 hasPublicationYear "2014" @default.
- W2021166720 type Work @default.
- W2021166720 sameAs 2021166720 @default.
- W2021166720 citedByCount "6" @default.
- W2021166720 countsByYear W20211667202015 @default.
- W2021166720 countsByYear W20211667202016 @default.
- W2021166720 countsByYear W20211667202017 @default.
- W2021166720 countsByYear W20211667202019 @default.
- W2021166720 countsByYear W20211667202022 @default.
- W2021166720 crossrefType "journal-article" @default.
- W2021166720 hasAuthorship W2021166720A5030046388 @default.
- W2021166720 hasAuthorship W2021166720A5077475197 @default.
- W2021166720 hasAuthorship W2021166720A5080058129 @default.
- W2021166720 hasAuthorship W2021166720A5089239122 @default.
- W2021166720 hasBestOaLocation W20211667201 @default.
- W2021166720 hasConcept C105611402 @default.
- W2021166720 hasConcept C11413529 @default.
- W2021166720 hasConcept C115328559 @default.
- W2021166720 hasConcept C121332964 @default.
- W2021166720 hasConcept C124101348 @default.
- W2021166720 hasConcept C153180895 @default.
- W2021166720 hasConcept C154945302 @default.
- W2021166720 hasConcept C158693339 @default.
- W2021166720 hasConcept C164866538 @default.
- W2021166720 hasConcept C169756996 @default.
- W2021166720 hasConcept C177264268 @default.
- W2021166720 hasConcept C184509293 @default.
- W2021166720 hasConcept C199360897 @default.
- W2021166720 hasConcept C22648726 @default.
- W2021166720 hasConcept C22789450 @default.
- W2021166720 hasConcept C33704608 @default.
- W2021166720 hasConcept C33923547 @default.
- W2021166720 hasConcept C41008148 @default.
- W2021166720 hasConcept C62520636 @default.
- W2021166720 hasConcept C73555534 @default.
- W2021166720 hasConcept C94641424 @default.
- W2021166720 hasConceptScore W2021166720C105611402 @default.
- W2021166720 hasConceptScore W2021166720C11413529 @default.
- W2021166720 hasConceptScore W2021166720C115328559 @default.
- W2021166720 hasConceptScore W2021166720C121332964 @default.
- W2021166720 hasConceptScore W2021166720C124101348 @default.
- W2021166720 hasConceptScore W2021166720C153180895 @default.
- W2021166720 hasConceptScore W2021166720C154945302 @default.
- W2021166720 hasConceptScore W2021166720C158693339 @default.
- W2021166720 hasConceptScore W2021166720C164866538 @default.
- W2021166720 hasConceptScore W2021166720C169756996 @default.
- W2021166720 hasConceptScore W2021166720C177264268 @default.
- W2021166720 hasConceptScore W2021166720C184509293 @default.
- W2021166720 hasConceptScore W2021166720C199360897 @default.
- W2021166720 hasConceptScore W2021166720C22648726 @default.
- W2021166720 hasConceptScore W2021166720C22789450 @default.
- W2021166720 hasConceptScore W2021166720C33704608 @default.
- W2021166720 hasConceptScore W2021166720C33923547 @default.