Matches in SemOpenAlex for { <https://semopenalex.org/work/W2021168894> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2021168894 endingPage "5749" @default.
- W2021168894 startingPage "5745" @default.
- W2021168894 abstract "Support vector machine (SVM) has become one of the most popular methods in machine learning during the last years. The parameters’ selection in SVM is an important step in achieving a high performance learning machine. Some methods are proposed by minimizing an estimate of generalization error based on bound of leave-one-out (LOO) bound, empirical error, etc. These methods have to optimize many quadratic programming problems and compute an inversion of the Gram–Schmidt matrix, which cause to be time-consuming in large-scale problems. This paper introduces a fast incremental method to optimize the kernel parameters in SVM by combining a geometric algorithm on SVM and an approximation of the gradient of the empirical error. This method shows an online way to update the kernel parameters and work set in incremental learning, which reduces the resources required both CPU time and storage space. The numerical tests on some benchmarks confirm our method." @default.
- W2021168894 created "2016-06-24" @default.
- W2021168894 creator A5002008253 @default.
- W2021168894 creator A5029941351 @default.
- W2021168894 date "2009-04-01" @default.
- W2021168894 modified "2023-09-24" @default.
- W2021168894 title "A geometric method for model selection in support vector machine" @default.
- W2021168894 cites W1601740268 @default.
- W2021168894 cites W1618905105 @default.
- W2021168894 cites W2000548672 @default.
- W2021168894 cites W2047549580 @default.
- W2021168894 cites W2099680562 @default.
- W2021168894 cites W2124351082 @default.
- W2021168894 cites W2136130862 @default.
- W2021168894 cites W2138882494 @default.
- W2021168894 cites W2148603752 @default.
- W2021168894 cites W2156909104 @default.
- W2021168894 cites W2158001550 @default.
- W2021168894 cites W2170756173 @default.
- W2021168894 doi "https://doi.org/10.1016/j.eswa.2008.06.096" @default.
- W2021168894 hasPublicationYear "2009" @default.
- W2021168894 type Work @default.
- W2021168894 sameAs 2021168894 @default.
- W2021168894 citedByCount "6" @default.
- W2021168894 countsByYear W20211688942013 @default.
- W2021168894 countsByYear W20211688942014 @default.
- W2021168894 countsByYear W20211688942016 @default.
- W2021168894 countsByYear W20211688942017 @default.
- W2021168894 crossrefType "journal-article" @default.
- W2021168894 hasAuthorship W2021168894A5002008253 @default.
- W2021168894 hasAuthorship W2021168894A5029941351 @default.
- W2021168894 hasConcept C11413529 @default.
- W2021168894 hasConcept C114614502 @default.
- W2021168894 hasConcept C119857082 @default.
- W2021168894 hasConcept C122280245 @default.
- W2021168894 hasConcept C12267149 @default.
- W2021168894 hasConcept C126255220 @default.
- W2021168894 hasConcept C134306372 @default.
- W2021168894 hasConcept C14948415 @default.
- W2021168894 hasConcept C154945302 @default.
- W2021168894 hasConcept C177148314 @default.
- W2021168894 hasConcept C33923547 @default.
- W2021168894 hasConcept C41008148 @default.
- W2021168894 hasConcept C74193536 @default.
- W2021168894 hasConcept C81845259 @default.
- W2021168894 hasConceptScore W2021168894C11413529 @default.
- W2021168894 hasConceptScore W2021168894C114614502 @default.
- W2021168894 hasConceptScore W2021168894C119857082 @default.
- W2021168894 hasConceptScore W2021168894C122280245 @default.
- W2021168894 hasConceptScore W2021168894C12267149 @default.
- W2021168894 hasConceptScore W2021168894C126255220 @default.
- W2021168894 hasConceptScore W2021168894C134306372 @default.
- W2021168894 hasConceptScore W2021168894C14948415 @default.
- W2021168894 hasConceptScore W2021168894C154945302 @default.
- W2021168894 hasConceptScore W2021168894C177148314 @default.
- W2021168894 hasConceptScore W2021168894C33923547 @default.
- W2021168894 hasConceptScore W2021168894C41008148 @default.
- W2021168894 hasConceptScore W2021168894C74193536 @default.
- W2021168894 hasConceptScore W2021168894C81845259 @default.
- W2021168894 hasIssue "3" @default.
- W2021168894 hasLocation W20211688941 @default.
- W2021168894 hasOpenAccess W2021168894 @default.
- W2021168894 hasPrimaryLocation W20211688941 @default.
- W2021168894 hasRelatedWork W2034486678 @default.
- W2021168894 hasRelatedWork W2094330550 @default.
- W2021168894 hasRelatedWork W2096474425 @default.
- W2021168894 hasRelatedWork W2220937770 @default.
- W2021168894 hasRelatedWork W2261169288 @default.
- W2021168894 hasRelatedWork W2368239531 @default.
- W2021168894 hasRelatedWork W2542297374 @default.
- W2021168894 hasRelatedWork W2914319004 @default.
- W2021168894 hasRelatedWork W2977967020 @default.
- W2021168894 hasRelatedWork W6229082 @default.
- W2021168894 hasVolume "36" @default.
- W2021168894 isParatext "false" @default.
- W2021168894 isRetracted "false" @default.
- W2021168894 magId "2021168894" @default.
- W2021168894 workType "article" @default.