Matches in SemOpenAlex for { <https://semopenalex.org/work/W2021172010> ?p ?o ?g. }
- W2021172010 endingPage "1176" @default.
- W2021172010 startingPage "1167" @default.
- W2021172010 abstract "Each cell of a battery stores electrical energy as chemical energy in two electrodes, a reductant (anode) and an oxidant (cathode), separated by an electrolyte that transfers the ionic component of the chemical reaction inside the cell and forces the electronic component outside the battery. The output on discharge is an external electronic current I at a voltage V for a time Δt. The chemical reaction of a rechargeable battery must be reversible on the application of a charging I and V. Critical parameters of a rechargeable battery are safety, density of energy that can be stored at a specific power input and retrieved at a specific power output, cycle and shelf life, storage efficiency, and cost of fabrication. Conventional ambient-temperature rechargeable batteries have solid electrodes and a liquid electrolyte. The positive electrode (cathode) consists of a host framework into which the mobile (working) cation is inserted reversibly over a finite solid-solution range. The solid-solution range, which is reduced at higher current by the rate of transfer of the working ion across electrode/electrolyte interfaces and within a host, limits the amount of charge per electrode formula unit that can be transferred over the time Δt = Δt(I). Moreover, the difference between energies of the LUMO and the HOMO of the electrolyte, i.e., electrolyte window, determines the maximum voltage for a long shelf and cycle life. The maximum stable voltage with an aqueous electrolyte is 1.5 V; the Li-ion rechargeable battery uses an organic electrolyte with a larger window, which increase the density of stored energy for a given Δt. Anode or cathode electrochemical potentials outside the electrolyte window can increase V, but they require formation of a passivating surface layer that must be permeable to Li(+) and capable of adapting rapidly to the changing electrode surface area as the electrode changes volume during cycling. A passivating surface layer adds to the impedance of the Li(+) transfer across the electrode/electrolyte interface and lowers the cycle life of a battery cell. Moreover, formation of a passivation layer on the anode robs Li from the cathode irreversibly on an initial charge, further lowering the reversible Δt. These problems plus the cost of quality control of manufacturing plague development of Li-ion rechargeable batteries that can compete with the internal combustion engine for powering electric cars and that can provide the needed low-cost storage of electrical energy generated by renewable wind and/or solar energy. Chemists are contributing to incremental improvements of the conventional strategy by investigating and controlling electrode passivation layers, improving the rate of Li(+) transfer across electrode/electrolyte interfaces, identifying electrolytes with larger windows while retaining a Li(+) conductivity σ(Li) > 10(-3) S cm(-1), synthesizing electrode morphologies that reduce the size of the active particles while pinning them on current collectors of large surface area accessible by the electrolyte, lowering the cost of cell fabrication, designing displacement-reaction anodes of higher capacity that allow a safe, fast charge, and designing alternative cathode hosts. However, new strategies are needed for batteries that go beyond powering hand-held devices, such as using electrode hosts with two-electron redox centers; replacing the cathode hosts by materials that undergo displacement reactions (e.g. sulfur) by liquid cathodes that may contain flow-through redox molecules, or by catalysts for air cathodes; and developing a Li(+) solid electrolyte separator membrane that allows an organic and aqueous liquid electrolyte on the anode and cathode sides, respectively. Opportunities exist for the chemist to bring together oxide and polymer or graphene chemistry in imaginative morphologies." @default.
- W2021172010 created "2016-06-24" @default.
- W2021172010 creator A5055848513 @default.
- W2021172010 creator A5056531495 @default.
- W2021172010 date "2013-01-18" @default.
- W2021172010 modified "2023-10-10" @default.
- W2021172010 title "The Li-Ion Rechargeable Battery: A Perspective" @default.
- W2021172010 cites W1539138126 @default.
- W2021172010 cites W1662595031 @default.
- W2021172010 cites W1769213404 @default.
- W2021172010 cites W1974789788 @default.
- W2021172010 cites W1978153904 @default.
- W2021172010 cites W1978838667 @default.
- W2021172010 cites W1980298623 @default.
- W2021172010 cites W1982612697 @default.
- W2021172010 cites W1985786341 @default.
- W2021172010 cites W1990520353 @default.
- W2021172010 cites W2001520057 @default.
- W2021172010 cites W2001894021 @default.
- W2021172010 cites W2017930179 @default.
- W2021172010 cites W2027081445 @default.
- W2021172010 cites W2033004089 @default.
- W2021172010 cites W2035205905 @default.
- W2021172010 cites W2037288288 @default.
- W2021172010 cites W2042581501 @default.
- W2021172010 cites W2045603875 @default.
- W2021172010 cites W2051546017 @default.
- W2021172010 cites W2053332809 @default.
- W2021172010 cites W2060142904 @default.
- W2021172010 cites W2062367666 @default.
- W2021172010 cites W2072430054 @default.
- W2021172010 cites W2073116686 @default.
- W2021172010 cites W2074841940 @default.
- W2021172010 cites W2076968595 @default.
- W2021172010 cites W2081865126 @default.
- W2021172010 cites W2088936680 @default.
- W2021172010 cites W2089204569 @default.
- W2021172010 cites W2096243922 @default.
- W2021172010 cites W2113472675 @default.
- W2021172010 cites W2120456504 @default.
- W2021172010 cites W2124235175 @default.
- W2021172010 cites W2124845074 @default.
- W2021172010 cites W2130818142 @default.
- W2021172010 cites W2131059618 @default.
- W2021172010 cites W2131594675 @default.
- W2021172010 cites W2140485806 @default.
- W2021172010 cites W2146406469 @default.
- W2021172010 cites W2152510783 @default.
- W2021172010 cites W2154232712 @default.
- W2021172010 cites W2232898241 @default.
- W2021172010 cites W2290574912 @default.
- W2021172010 cites W2951361689 @default.
- W2021172010 doi "https://doi.org/10.1021/ja3091438" @default.
- W2021172010 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23294028" @default.
- W2021172010 hasPublicationYear "2013" @default.
- W2021172010 type Work @default.
- W2021172010 sameAs 2021172010 @default.
- W2021172010 citedByCount "7021" @default.
- W2021172010 countsByYear W20211720102013 @default.
- W2021172010 countsByYear W20211720102014 @default.
- W2021172010 countsByYear W20211720102015 @default.
- W2021172010 countsByYear W20211720102016 @default.
- W2021172010 countsByYear W20211720102017 @default.
- W2021172010 countsByYear W20211720102018 @default.
- W2021172010 countsByYear W20211720102019 @default.
- W2021172010 countsByYear W20211720102020 @default.
- W2021172010 countsByYear W20211720102021 @default.
- W2021172010 countsByYear W20211720102022 @default.
- W2021172010 countsByYear W20211720102023 @default.
- W2021172010 crossrefType "journal-article" @default.
- W2021172010 hasAuthorship W2021172010A5055848513 @default.
- W2021172010 hasAuthorship W2021172010A5056531495 @default.
- W2021172010 hasConcept C113196181 @default.
- W2021172010 hasConcept C119599485 @default.
- W2021172010 hasConcept C121332964 @default.
- W2021172010 hasConcept C127413603 @default.
- W2021172010 hasConcept C145148216 @default.
- W2021172010 hasConcept C147789679 @default.
- W2021172010 hasConcept C163258240 @default.
- W2021172010 hasConcept C165801399 @default.
- W2021172010 hasConcept C17525397 @default.
- W2021172010 hasConcept C178790620 @default.
- W2021172010 hasConcept C185592680 @default.
- W2021172010 hasConcept C42360764 @default.
- W2021172010 hasConcept C49110097 @default.
- W2021172010 hasConcept C52859227 @default.
- W2021172010 hasConcept C555008776 @default.
- W2021172010 hasConcept C68801617 @default.
- W2021172010 hasConcept C73916439 @default.
- W2021172010 hasConcept C89395315 @default.
- W2021172010 hasConcept C97355855 @default.
- W2021172010 hasConceptScore W2021172010C113196181 @default.
- W2021172010 hasConceptScore W2021172010C119599485 @default.
- W2021172010 hasConceptScore W2021172010C121332964 @default.
- W2021172010 hasConceptScore W2021172010C127413603 @default.
- W2021172010 hasConceptScore W2021172010C145148216 @default.
- W2021172010 hasConceptScore W2021172010C147789679 @default.
- W2021172010 hasConceptScore W2021172010C163258240 @default.