Matches in SemOpenAlex for { <https://semopenalex.org/work/W2021186884> ?p ?o ?g. }
- W2021186884 endingPage "112" @default.
- W2021186884 startingPage "98" @default.
- W2021186884 abstract "In preclinical and clinical experiments, pharmacokinetic (PK) studies are designed to analyse the evolution of drug concentration in plasma over time i.e. the PK profile. Some PK parameters are estimated in order to summarize the complete drug's kinetic profile: area under the curve (AUC), maximal concentration (Cmax), time at which the maximal concentration occurs (tmax) and half-life time (t1/2). Several methods have been proposed to estimate these PK parameters. A first method relies on interpolating between observed concentrations. The interpolation method is often chosen linear. This method is simple and fast. Another method relies on compartmental modelling. In this case, nonlinear methods are used to estimate parameters of a chosen compartmental model. This method provides generally good results. However, if the data are sparse and noisy, two difficulties can arise with this method. The first one is related to the choice of the suitable compartmental model given the small number of data available in preclinical experiment for instance. Second, nonlinear methods can fail to converge. Much work has been done recently to circumvent these problems (J. Pharmacokinet. Pharmacodyn. 2007; 34:229–249, Stat. Comput., to appear, Biometrical J., to appear, ESAIM P&S 2004; 8:115–131). In this paper, we propose a Bayesian nonparametric model based on P-splines. This method provides good PK parameters estimation, whatever be the number of available observations and the level of noise in the data. Simulations show that the proposed method provides better PK parameters estimations than the interpolation method, both in terms of bias and precision. The Bayesian nonparametric method provides also better AUC and t1/2 estimations than a correctly specified compartmental model, whereas this last method performs better in tmax and Cmax estimations. We extend the basic model to a hierarchical one that treats the case where we have concentrations from different subjects. We are then able to get individual PK parameter estimations. Finally, with Bayesian methods, we can get easily some uncertainty measures by obtaining credibility sets for each PK parameter. Copyright © 2008 John Wiley & Sons, Ltd." @default.
- W2021186884 created "2016-06-24" @default.
- W2021186884 creator A5015554636 @default.
- W2021186884 creator A5042135512 @default.
- W2021186884 creator A5077398851 @default.
- W2021186884 creator A5085679808 @default.
- W2021186884 date "2009-04-01" @default.
- W2021186884 modified "2023-10-16" @default.
- W2021186884 title "Pharmacokinetic parameters estimation using adaptive Bayesian P-splines models" @default.
- W2021186884 cites W1772406207 @default.
- W2021186884 cites W1965478395 @default.
- W2021186884 cites W1978468845 @default.
- W2021186884 cites W1979519992 @default.
- W2021186884 cites W1979635377 @default.
- W2021186884 cites W1990420052 @default.
- W2021186884 cites W2022869105 @default.
- W2021186884 cites W2029789274 @default.
- W2021186884 cites W2030734219 @default.
- W2021186884 cites W2040767617 @default.
- W2021186884 cites W2042925852 @default.
- W2021186884 cites W2055742299 @default.
- W2021186884 cites W2058879163 @default.
- W2021186884 cites W2078949394 @default.
- W2021186884 cites W2095727687 @default.
- W2021186884 cites W2119047368 @default.
- W2021186884 cites W2122966172 @default.
- W2021186884 cites W2142635246 @default.
- W2021186884 cites W2153106877 @default.
- W2021186884 cites W2154780229 @default.
- W2021186884 cites W2316008801 @default.
- W2021186884 cites W2502670554 @default.
- W2021186884 cites W276174135 @default.
- W2021186884 cites W4298872162 @default.
- W2021186884 doi "https://doi.org/10.1002/pst.336" @default.
- W2021186884 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18481279" @default.
- W2021186884 hasPublicationYear "2009" @default.
- W2021186884 type Work @default.
- W2021186884 sameAs 2021186884 @default.
- W2021186884 citedByCount "4" @default.
- W2021186884 countsByYear W20211868842018 @default.
- W2021186884 countsByYear W20211868842021 @default.
- W2021186884 countsByYear W20211868842023 @default.
- W2021186884 crossrefType "journal-article" @default.
- W2021186884 hasAuthorship W2021186884A5015554636 @default.
- W2021186884 hasAuthorship W2021186884A5042135512 @default.
- W2021186884 hasAuthorship W2021186884A5077398851 @default.
- W2021186884 hasAuthorship W2021186884A5085679808 @default.
- W2021186884 hasConcept C102366305 @default.
- W2021186884 hasConcept C10390562 @default.
- W2021186884 hasConcept C104114177 @default.
- W2021186884 hasConcept C105795698 @default.
- W2021186884 hasConcept C107673813 @default.
- W2021186884 hasConcept C112705442 @default.
- W2021186884 hasConcept C11413529 @default.
- W2021186884 hasConcept C121332964 @default.
- W2021186884 hasConcept C126255220 @default.
- W2021186884 hasConcept C127413603 @default.
- W2021186884 hasConcept C137800194 @default.
- W2021186884 hasConcept C154945302 @default.
- W2021186884 hasConcept C158622935 @default.
- W2021186884 hasConcept C22979827 @default.
- W2021186884 hasConcept C28826006 @default.
- W2021186884 hasConcept C33923547 @default.
- W2021186884 hasConcept C41008148 @default.
- W2021186884 hasConcept C60644358 @default.
- W2021186884 hasConcept C62520636 @default.
- W2021186884 hasConcept C66938386 @default.
- W2021186884 hasConcept C86803240 @default.
- W2021186884 hasConceptScore W2021186884C102366305 @default.
- W2021186884 hasConceptScore W2021186884C10390562 @default.
- W2021186884 hasConceptScore W2021186884C104114177 @default.
- W2021186884 hasConceptScore W2021186884C105795698 @default.
- W2021186884 hasConceptScore W2021186884C107673813 @default.
- W2021186884 hasConceptScore W2021186884C112705442 @default.
- W2021186884 hasConceptScore W2021186884C11413529 @default.
- W2021186884 hasConceptScore W2021186884C121332964 @default.
- W2021186884 hasConceptScore W2021186884C126255220 @default.
- W2021186884 hasConceptScore W2021186884C127413603 @default.
- W2021186884 hasConceptScore W2021186884C137800194 @default.
- W2021186884 hasConceptScore W2021186884C154945302 @default.
- W2021186884 hasConceptScore W2021186884C158622935 @default.
- W2021186884 hasConceptScore W2021186884C22979827 @default.
- W2021186884 hasConceptScore W2021186884C28826006 @default.
- W2021186884 hasConceptScore W2021186884C33923547 @default.
- W2021186884 hasConceptScore W2021186884C41008148 @default.
- W2021186884 hasConceptScore W2021186884C60644358 @default.
- W2021186884 hasConceptScore W2021186884C62520636 @default.
- W2021186884 hasConceptScore W2021186884C66938386 @default.
- W2021186884 hasConceptScore W2021186884C86803240 @default.
- W2021186884 hasIssue "2" @default.
- W2021186884 hasLocation W20211868841 @default.
- W2021186884 hasLocation W20211868842 @default.
- W2021186884 hasOpenAccess W2021186884 @default.
- W2021186884 hasPrimaryLocation W20211868841 @default.
- W2021186884 hasRelatedWork W151882183 @default.
- W2021186884 hasRelatedWork W1837630526 @default.
- W2021186884 hasRelatedWork W2014405952 @default.
- W2021186884 hasRelatedWork W2335589441 @default.