Matches in SemOpenAlex for { <https://semopenalex.org/work/W2021350789> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2021350789 endingPage "1350011" @default.
- W2021350789 startingPage "1350011" @default.
- W2021350789 abstract "Research on networks is increasingly popular in a wide range of machine learning fields, and structural inference of networks is a key problem. Unfortunately, network structural inference is time consuming and there is an increasing need to infer the structure of ever-larger networks. This article presents the Dense Structural Expectation Maximisation (DSEM) algorithm, a novel extension of the well-known SEM algorithm. DSEM increases the efficiency of structural inference by using the time-expensive calculations required in each SEM iteration more efficiently, and can be O(N) times faster than SEM, where N is the size of the network. The article has also combined DSEM with parallelisation and evaluated the impact of these improvements over SEM, individually and combined. The possibility of combining these novel approaches with other research on structural inference is also considered. The contributions also appear to be usable for all kinds of structural inference, and may greatly improve the range, variety and size of problems which can be tractably addressed. Code is freely available online at: http://syntilect.com/cgf/pubs:software ." @default.
- W2021350789 created "2016-06-24" @default.
- W2021350789 creator A5071329941 @default.
- W2021350789 creator A5076935774 @default.
- W2021350789 date "2013-06-01" @default.
- W2021350789 modified "2023-09-27" @default.
- W2021350789 title "DENSE STRUCTURAL EXPECTATION MAXIMISATION WITH PARALLELISATION FOR EFFICIENT LARGE-NETWORK STRUCTURAL INFERENCE" @default.
- W2021350789 cites W1522740115 @default.
- W2021350789 cites W1600339875 @default.
- W2021350789 cites W1972764318 @default.
- W2021350789 cites W1985257401 @default.
- W2021350789 cites W2081117643 @default.
- W2021350789 cites W2091088554 @default.
- W2021350789 cites W2091606273 @default.
- W2021350789 cites W2100295605 @default.
- W2021350789 cites W2107333380 @default.
- W2021350789 cites W2112511512 @default.
- W2021350789 cites W2113979998 @default.
- W2021350789 cites W2115478488 @default.
- W2021350789 cites W2120037909 @default.
- W2021350789 cites W2121413481 @default.
- W2021350789 cites W2123691067 @default.
- W2021350789 cites W2161304688 @default.
- W2021350789 cites W2161511352 @default.
- W2021350789 cites W2161732139 @default.
- W2021350789 doi "https://doi.org/10.1142/s0218213013500115" @default.
- W2021350789 hasPublicationYear "2013" @default.
- W2021350789 type Work @default.
- W2021350789 sameAs 2021350789 @default.
- W2021350789 citedByCount "3" @default.
- W2021350789 countsByYear W20213507892014 @default.
- W2021350789 countsByYear W20213507892017 @default.
- W2021350789 crossrefType "journal-article" @default.
- W2021350789 hasAuthorship W2021350789A5071329941 @default.
- W2021350789 hasAuthorship W2021350789A5076935774 @default.
- W2021350789 hasConcept C11413529 @default.
- W2021350789 hasConcept C119857082 @default.
- W2021350789 hasConcept C124101348 @default.
- W2021350789 hasConcept C136197465 @default.
- W2021350789 hasConcept C136764020 @default.
- W2021350789 hasConcept C154945302 @default.
- W2021350789 hasConcept C159985019 @default.
- W2021350789 hasConcept C177264268 @default.
- W2021350789 hasConcept C192562407 @default.
- W2021350789 hasConcept C199360897 @default.
- W2021350789 hasConcept C204323151 @default.
- W2021350789 hasConcept C26517878 @default.
- W2021350789 hasConcept C2776214188 @default.
- W2021350789 hasConcept C2776760102 @default.
- W2021350789 hasConcept C2777904410 @default.
- W2021350789 hasConcept C2780615836 @default.
- W2021350789 hasConcept C38652104 @default.
- W2021350789 hasConcept C41008148 @default.
- W2021350789 hasConcept C80444323 @default.
- W2021350789 hasConceptScore W2021350789C11413529 @default.
- W2021350789 hasConceptScore W2021350789C119857082 @default.
- W2021350789 hasConceptScore W2021350789C124101348 @default.
- W2021350789 hasConceptScore W2021350789C136197465 @default.
- W2021350789 hasConceptScore W2021350789C136764020 @default.
- W2021350789 hasConceptScore W2021350789C154945302 @default.
- W2021350789 hasConceptScore W2021350789C159985019 @default.
- W2021350789 hasConceptScore W2021350789C177264268 @default.
- W2021350789 hasConceptScore W2021350789C192562407 @default.
- W2021350789 hasConceptScore W2021350789C199360897 @default.
- W2021350789 hasConceptScore W2021350789C204323151 @default.
- W2021350789 hasConceptScore W2021350789C26517878 @default.
- W2021350789 hasConceptScore W2021350789C2776214188 @default.
- W2021350789 hasConceptScore W2021350789C2776760102 @default.
- W2021350789 hasConceptScore W2021350789C2777904410 @default.
- W2021350789 hasConceptScore W2021350789C2780615836 @default.
- W2021350789 hasConceptScore W2021350789C38652104 @default.
- W2021350789 hasConceptScore W2021350789C41008148 @default.
- W2021350789 hasConceptScore W2021350789C80444323 @default.
- W2021350789 hasIssue "03" @default.
- W2021350789 hasLocation W20213507891 @default.
- W2021350789 hasOpenAccess W2021350789 @default.
- W2021350789 hasPrimaryLocation W20213507891 @default.
- W2021350789 hasRelatedWork W2329452785 @default.
- W2021350789 hasRelatedWork W2356380379 @default.
- W2021350789 hasRelatedWork W2511279186 @default.
- W2021350789 hasRelatedWork W2961085424 @default.
- W2021350789 hasRelatedWork W2963058055 @default.
- W2021350789 hasRelatedWork W3126152116 @default.
- W2021350789 hasRelatedWork W4286629047 @default.
- W2021350789 hasRelatedWork W4306321456 @default.
- W2021350789 hasRelatedWork W4306674287 @default.
- W2021350789 hasRelatedWork W4224009465 @default.
- W2021350789 hasVolume "22" @default.
- W2021350789 isParatext "false" @default.
- W2021350789 isRetracted "false" @default.
- W2021350789 magId "2021350789" @default.
- W2021350789 workType "article" @default.