Matches in SemOpenAlex for { <https://semopenalex.org/work/W2021386989> ?p ?o ?g. }
- W2021386989 endingPage "197" @default.
- W2021386989 startingPage "181" @default.
- W2021386989 abstract "Geological storage is presently one of the most promising options for reducing anthropogenic emissions of CO2. Among the several projects investigating the fate of CO2 stored at depth, the EnCana's CO2 injection EOR (Enhancing Oil Recovery) project at Weyburn (Saskatchewan, Canada) is the most important oil production development that hosts an international monitoring project. In the Weyburn EOR Project CO2 is used to increase recovery of heavy oil from the Midale Beds, a Mississippian reservoir consisting of shallow marine carbonate, where about 3 billions standard m3 of supercritical CO2 have been injected since 2000 with an injection rate of 5000 ton/day. In this work the available dataset (bulk mineralogy of the reservoir, gas-cap composition and selected pre- and post-CO2 injection water samples) provided by the International Energy Agency Weyburn CO2 Monitoring & Storage Project has been used in order to: reconstruct the pre-injection reservoir chemical composition (including pH and the boundary conditions at 62 °C and 15 MPa); assess the evolution of the reservoir subjected to CO2 injection and predict dissolution/precipitation processes of the Weyburn brines over 100 years after injection; validate the short-term (September 2000–2003) evolution of the in situ reservoir fluids due to the CO2 injection, by comparing the surface analytical data with the composition of the computed depressurized brines. To achieve these goals the PRHEEQC (V2.14) Software Package was used with both modified thermodynamic database and correction for supercritical CO2 fugacity. The oil–gas–water interaction and the non-ideality of the gas phase (with exception of CO2) were not considered in the numerical simulations. Despite intrinsic limitations and uncertainties of geochemical modeling, the main results can be summarized, as follows: 1) the calculated pre-injection chemical composition of the Midale Beds brine is consistent with the analytical data of the waters collected in 2000 (baseline survey), 2) the main reservoir reactions (CO2 and carbonate dissolution) take place within the first year of simulation, 3) the temporal evolution of the chemical features of the fluids in the Weyburn reservoir suggests that CO2 can safely be stored by solubility (as CO2(aq)) and mineral trapping (via dawsonite precipitation). The short-term validation performed by calculating chemical composition of the reservoir fluids (corrected for surface conditions) after the simulation of 3 years of CO2 injection is consistent (error ≤ 5%) with the analytical data of the wellhead water samples collected in 2003, with the exception of Ca and Mg (error > 90%), likely due to complexation effect of carboxilic acid." @default.
- W2021386989 created "2016-06-24" @default.
- W2021386989 creator A5020265649 @default.
- W2021386989 creator A5037284647 @default.
- W2021386989 creator A5045348009 @default.
- W2021386989 creator A5073886948 @default.
- W2021386989 creator A5074107275 @default.
- W2021386989 creator A5081540940 @default.
- W2021386989 date "2009-07-01" @default.
- W2021386989 modified "2023-10-12" @default.
- W2021386989 title "Geochemical modeling of CO2 storage in deep reservoirs: The Weyburn Project (Canada) case study" @default.
- W2021386989 cites W1487226342 @default.
- W2021386989 cites W1966939135 @default.
- W2021386989 cites W1968789659 @default.
- W2021386989 cites W1969372527 @default.
- W2021386989 cites W1969873995 @default.
- W2021386989 cites W1971386167 @default.
- W2021386989 cites W1971613502 @default.
- W2021386989 cites W1971907739 @default.
- W2021386989 cites W1972016016 @default.
- W2021386989 cites W1972154597 @default.
- W2021386989 cites W1977806363 @default.
- W2021386989 cites W1977911061 @default.
- W2021386989 cites W1984867092 @default.
- W2021386989 cites W1984942285 @default.
- W2021386989 cites W1985094052 @default.
- W2021386989 cites W1987699551 @default.
- W2021386989 cites W1988473701 @default.
- W2021386989 cites W1989544084 @default.
- W2021386989 cites W1991042399 @default.
- W2021386989 cites W1992671779 @default.
- W2021386989 cites W1995838883 @default.
- W2021386989 cites W1999008600 @default.
- W2021386989 cites W1999165439 @default.
- W2021386989 cites W2000893966 @default.
- W2021386989 cites W2001981172 @default.
- W2021386989 cites W2007766503 @default.
- W2021386989 cites W2009681160 @default.
- W2021386989 cites W2012286381 @default.
- W2021386989 cites W2013228925 @default.
- W2021386989 cites W2014030308 @default.
- W2021386989 cites W2015446010 @default.
- W2021386989 cites W2018335072 @default.
- W2021386989 cites W2018727668 @default.
- W2021386989 cites W2018806968 @default.
- W2021386989 cites W2022935824 @default.
- W2021386989 cites W2029343525 @default.
- W2021386989 cites W2030408325 @default.
- W2021386989 cites W2034080819 @default.
- W2021386989 cites W2035695555 @default.
- W2021386989 cites W2037535080 @default.
- W2021386989 cites W2047601379 @default.
- W2021386989 cites W2047623603 @default.
- W2021386989 cites W2050525089 @default.
- W2021386989 cites W2051757039 @default.
- W2021386989 cites W2053383644 @default.
- W2021386989 cites W2054912778 @default.
- W2021386989 cites W2058679923 @default.
- W2021386989 cites W2063635825 @default.
- W2021386989 cites W2063936779 @default.
- W2021386989 cites W2064572976 @default.
- W2021386989 cites W2068656183 @default.
- W2021386989 cites W2069250865 @default.
- W2021386989 cites W2077868379 @default.
- W2021386989 cites W2078916507 @default.
- W2021386989 cites W2079891803 @default.
- W2021386989 cites W2084283421 @default.
- W2021386989 cites W2089179158 @default.
- W2021386989 cites W2090968131 @default.
- W2021386989 cites W2094649238 @default.
- W2021386989 cites W2105483052 @default.
- W2021386989 cites W2117804331 @default.
- W2021386989 cites W2121101968 @default.
- W2021386989 cites W2130430080 @default.
- W2021386989 cites W2135226847 @default.
- W2021386989 cites W2142332601 @default.
- W2021386989 cites W2160333533 @default.
- W2021386989 cites W2328535874 @default.
- W2021386989 cites W2334224248 @default.
- W2021386989 doi "https://doi.org/10.1016/j.chemgeo.2008.12.029" @default.
- W2021386989 hasPublicationYear "2009" @default.
- W2021386989 type Work @default.
- W2021386989 sameAs 2021386989 @default.
- W2021386989 citedByCount "100" @default.
- W2021386989 countsByYear W20213869892012 @default.
- W2021386989 countsByYear W20213869892013 @default.
- W2021386989 countsByYear W20213869892014 @default.
- W2021386989 countsByYear W20213869892015 @default.
- W2021386989 countsByYear W20213869892016 @default.
- W2021386989 countsByYear W20213869892017 @default.
- W2021386989 countsByYear W20213869892018 @default.
- W2021386989 countsByYear W20213869892019 @default.
- W2021386989 countsByYear W20213869892020 @default.
- W2021386989 countsByYear W20213869892021 @default.
- W2021386989 countsByYear W20213869892022 @default.
- W2021386989 countsByYear W20213869892023 @default.
- W2021386989 crossrefType "journal-article" @default.
- W2021386989 hasAuthorship W2021386989A5020265649 @default.