Matches in SemOpenAlex for { <https://semopenalex.org/work/W2021476245> ?p ?o ?g. }
- W2021476245 endingPage "2165" @default.
- W2021476245 startingPage "2151" @default.
- W2021476245 abstract "Molecular mechanical force field (FF) methods are useful in studying condensed phase properties. They are complementary to experiments and can often go beyond experiments in atomic details. Even if a FF is specific for studying structures, dynamics, and functions of biomolecules, it is still important for the FF to accurately reproduce the experimental liquid properties of small molecules that represent the chemical moieties of biomolecules. Otherwise, the force field may not describe the structures and energies of macromolecules in aqueous solutions properly. In this work, we have carried out a systematic study to evaluate the General AMBER Force Field (GAFF) in studying densities and heats of vaporization for a large set of organic molecules that covers the most common chemical functional groups. The latest techniques, such as the particle mesh Ewald (PME) for calculating electrostatic energies and Langevin dynamics for scaling temperatures, have been applied in the molecular dynamics (MD) simulations. For density, the average percent error (APE) of 71 organic compounds is 4.43% when compared to the experimental values. More encouragingly, the APE drops to 3.43% after the exclusion of two outliers and four other compounds for which the experimental densities have been measured with pressures higher than 1.0 atm. For the heat of vaporization, several protocols have been investigated, and the best one, P4/ntt0, achieves an average unsigned error (AUE) and a root-mean-square error (RMSE) of 0.93 and 1.20 kcal/mol, respectively. How to reduce the prediction errors through proper van der Waals (vdW) parametrization has been discussed. An encouraging finding in vdW parametrization is that both densities and heats of vaporization approach their “ideal” values in a synchronous fashion when vdW parameters are tuned. The following hydration free energy calculation using thermodynamic integration further justifies the vdW refinement. We conclude that simple vdW parametrization can significantly reduce the prediction errors. We believe that GAFF can greatly improve its performance in predicting liquid properties of organic molecules after a systematic vdW parametrization, which will be reported in a separate paper." @default.
- W2021476245 created "2016-06-24" @default.
- W2021476245 creator A5028525523 @default.
- W2021476245 creator A5058390067 @default.
- W2021476245 date "2011-06-08" @default.
- W2021476245 modified "2023-09-27" @default.
- W2021476245 title "Application of Molecular Dynamics Simulations in Molecular Property Prediction. 1. Density and Heat of Vaporization" @default.
- W2021476245 cites W1967737979 @default.
- W2021476245 cites W1968755416 @default.
- W2021476245 cites W1976161355 @default.
- W2021476245 cites W1978886491 @default.
- W2021476245 cites W1980075189 @default.
- W2021476245 cites W1980609122 @default.
- W2021476245 cites W1980618423 @default.
- W2021476245 cites W1992009719 @default.
- W2021476245 cites W1994055814 @default.
- W2021476245 cites W1994941561 @default.
- W2021476245 cites W1997004261 @default.
- W2021476245 cites W2009307057 @default.
- W2021476245 cites W2015639163 @default.
- W2021476245 cites W2015688756 @default.
- W2021476245 cites W2017664535 @default.
- W2021476245 cites W2018940383 @default.
- W2021476245 cites W2023332487 @default.
- W2021476245 cites W2024726841 @default.
- W2021476245 cites W2026590485 @default.
- W2021476245 cites W2027408247 @default.
- W2021476245 cites W2035687084 @default.
- W2021476245 cites W2037535298 @default.
- W2021476245 cites W2037961164 @default.
- W2021476245 cites W2038532826 @default.
- W2021476245 cites W2043666236 @default.
- W2021476245 cites W2048214699 @default.
- W2021476245 cites W2048866816 @default.
- W2021476245 cites W2051381895 @default.
- W2021476245 cites W2051707493 @default.
- W2021476245 cites W2053247217 @default.
- W2021476245 cites W2054357498 @default.
- W2021476245 cites W2064414576 @default.
- W2021476245 cites W2066104528 @default.
- W2021476245 cites W2070885633 @default.
- W2021476245 cites W2071986884 @default.
- W2021476245 cites W2072683434 @default.
- W2021476245 cites W2076744620 @default.
- W2021476245 cites W2077622157 @default.
- W2021476245 cites W2078379376 @default.
- W2021476245 cites W2078823941 @default.
- W2021476245 cites W2079541261 @default.
- W2021476245 cites W2084482408 @default.
- W2021476245 cites W2084652423 @default.
- W2021476245 cites W2087580091 @default.
- W2021476245 cites W2092511209 @default.
- W2021476245 cites W2093221728 @default.
- W2021476245 cites W2103945336 @default.
- W2021476245 cites W2115700022 @default.
- W2021476245 cites W2122199548 @default.
- W2021476245 cites W2131288855 @default.
- W2021476245 cites W2142868265 @default.
- W2021476245 cites W2144369061 @default.
- W2021476245 cites W2146462263 @default.
- W2021476245 cites W2147993766 @default.
- W2021476245 cites W2149263899 @default.
- W2021476245 cites W2149397893 @default.
- W2021476245 cites W2155524113 @default.
- W2021476245 cites W2319240675 @default.
- W2021476245 cites W2335130470 @default.
- W2021476245 cites W2950508994 @default.
- W2021476245 cites W4245687163 @default.
- W2021476245 doi "https://doi.org/10.1021/ct200142z" @default.
- W2021476245 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3156483" @default.
- W2021476245 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21857814" @default.
- W2021476245 hasPublicationYear "2011" @default.
- W2021476245 type Work @default.
- W2021476245 sameAs 2021476245 @default.
- W2021476245 citedByCount "104" @default.
- W2021476245 countsByYear W20214762452012 @default.
- W2021476245 countsByYear W20214762452013 @default.
- W2021476245 countsByYear W20214762452014 @default.
- W2021476245 countsByYear W20214762452015 @default.
- W2021476245 countsByYear W20214762452016 @default.
- W2021476245 countsByYear W20214762452017 @default.
- W2021476245 countsByYear W20214762452018 @default.
- W2021476245 countsByYear W20214762452019 @default.
- W2021476245 countsByYear W20214762452020 @default.
- W2021476245 countsByYear W20214762452021 @default.
- W2021476245 countsByYear W20214762452022 @default.
- W2021476245 countsByYear W20214762452023 @default.
- W2021476245 crossrefType "journal-article" @default.
- W2021476245 hasAuthorship W2021476245A5028525523 @default.
- W2021476245 hasAuthorship W2021476245A5058390067 @default.
- W2021476245 hasBestOaLocation W20214762452 @default.
- W2021476245 hasConcept C10803110 @default.
- W2021476245 hasConcept C121332964 @default.
- W2021476245 hasConcept C121864883 @default.
- W2021476245 hasConcept C126061179 @default.
- W2021476245 hasConcept C147597530 @default.
- W2021476245 hasConcept C159467904 @default.
- W2021476245 hasConcept C171250308 @default.