Matches in SemOpenAlex for { <https://semopenalex.org/work/W2021556412> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2021556412 endingPage "92" @default.
- W2021556412 startingPage "81" @default.
- W2021556412 abstract "Abstract Although linear filters are useful in a various applications in the context of speech processing, there are several evidences for existence of nonlinearity in speech signals. Our main aim is to launch a comprehensive investigation into the exploitation of nonlinear Volterra filters in the context of the ADPCM‐based speech coding technique, using two methods of forward prediction, based on the LS criterion, and backward prediction, based on both LMS and RLS adaptation algorithms. In any case, after solving some innate problems, for example, ill‐conditioning and instability, schemes for optimum exploitation of nonlinear prediction are developed and simulation results are provided, tested with several performance criteria. With forward prediction a scheme is developed to detect and flag those frames for which, after stabilizing, including the quadratic predictor is beneficial. Scalar and vector quantisation methods are used for quantising the residual signal and the filter parameters, respectively. The results show that using this scheme a negligible improvement (up to 0.62 dB in the SNR) can be achieved, in spite of the increase in bit rate and complexity. With backward prediction two frame‐based schemes are developed in which for each frame, after examining a set of quadratic filters, the best filter in the sense of the best quality of the reconstructed speech is selected. The ultimate schemes result in an improvement of up to 1.5 dB in the overall SNR of the reconstructed speech at the cost of a slight increase in the bit‐rate, a short delay and a demanding increase in the complexity. Copyright © 2010 John Wiley & Sons, Ltd." @default.
- W2021556412 created "2016-06-24" @default.
- W2021556412 creator A5041861083 @default.
- W2021556412 creator A5003689960 @default.
- W2021556412 date "2010-08-27" @default.
- W2021556412 modified "2023-10-09" @default.
- W2021556412 title "Employing Volterra filters in the ADPCM technique for speech coding: a comprehensive investigation" @default.
- W2021556412 cites W1966264494 @default.
- W2021556412 cites W2014606796 @default.
- W2021556412 cites W2022554507 @default.
- W2021556412 cites W2102995708 @default.
- W2021556412 cites W2120256301 @default.
- W2021556412 cites W2142431921 @default.
- W2021556412 cites W2165618124 @default.
- W2021556412 cites W2169394990 @default.
- W2021556412 cites W4206769666 @default.
- W2021556412 cites W4256182494 @default.
- W2021556412 doi "https://doi.org/10.1002/ett.1440" @default.
- W2021556412 hasPublicationYear "2010" @default.
- W2021556412 type Work @default.
- W2021556412 sameAs 2021556412 @default.
- W2021556412 citedByCount "10" @default.
- W2021556412 countsByYear W20215564122012 @default.
- W2021556412 countsByYear W20215564122013 @default.
- W2021556412 countsByYear W20215564122015 @default.
- W2021556412 countsByYear W20215564122017 @default.
- W2021556412 countsByYear W20215564122018 @default.
- W2021556412 countsByYear W20215564122020 @default.
- W2021556412 crossrefType "journal-article" @default.
- W2021556412 hasAuthorship W2021556412A5003689960 @default.
- W2021556412 hasAuthorship W2021556412A5041861083 @default.
- W2021556412 hasConcept C106131492 @default.
- W2021556412 hasConcept C11413529 @default.
- W2021556412 hasConcept C121332964 @default.
- W2021556412 hasConcept C131109320 @default.
- W2021556412 hasConcept C13895895 @default.
- W2021556412 hasConcept C151730666 @default.
- W2021556412 hasConcept C154945302 @default.
- W2021556412 hasConcept C158622935 @default.
- W2021556412 hasConcept C2775924081 @default.
- W2021556412 hasConcept C2779343474 @default.
- W2021556412 hasConcept C28490314 @default.
- W2021556412 hasConcept C31972630 @default.
- W2021556412 hasConcept C41008148 @default.
- W2021556412 hasConcept C47446073 @default.
- W2021556412 hasConcept C62520636 @default.
- W2021556412 hasConcept C86803240 @default.
- W2021556412 hasConceptScore W2021556412C106131492 @default.
- W2021556412 hasConceptScore W2021556412C11413529 @default.
- W2021556412 hasConceptScore W2021556412C121332964 @default.
- W2021556412 hasConceptScore W2021556412C131109320 @default.
- W2021556412 hasConceptScore W2021556412C13895895 @default.
- W2021556412 hasConceptScore W2021556412C151730666 @default.
- W2021556412 hasConceptScore W2021556412C154945302 @default.
- W2021556412 hasConceptScore W2021556412C158622935 @default.
- W2021556412 hasConceptScore W2021556412C2775924081 @default.
- W2021556412 hasConceptScore W2021556412C2779343474 @default.
- W2021556412 hasConceptScore W2021556412C28490314 @default.
- W2021556412 hasConceptScore W2021556412C31972630 @default.
- W2021556412 hasConceptScore W2021556412C41008148 @default.
- W2021556412 hasConceptScore W2021556412C47446073 @default.
- W2021556412 hasConceptScore W2021556412C62520636 @default.
- W2021556412 hasConceptScore W2021556412C86803240 @default.
- W2021556412 hasIssue "2" @default.
- W2021556412 hasLocation W20215564121 @default.
- W2021556412 hasOpenAccess W2021556412 @default.
- W2021556412 hasPrimaryLocation W20215564121 @default.
- W2021556412 hasRelatedWork W1911859126 @default.
- W2021556412 hasRelatedWork W1921152853 @default.
- W2021556412 hasRelatedWork W2129336882 @default.
- W2021556412 hasRelatedWork W2129377384 @default.
- W2021556412 hasRelatedWork W2363056088 @default.
- W2021556412 hasRelatedWork W2363301696 @default.
- W2021556412 hasRelatedWork W2527692153 @default.
- W2021556412 hasRelatedWork W2808395304 @default.
- W2021556412 hasRelatedWork W62929309 @default.
- W2021556412 hasRelatedWork W2120730869 @default.
- W2021556412 hasVolume "22" @default.
- W2021556412 isParatext "false" @default.
- W2021556412 isRetracted "false" @default.
- W2021556412 magId "2021556412" @default.
- W2021556412 workType "article" @default.