Matches in SemOpenAlex for { <https://semopenalex.org/work/W2021567244> ?p ?o ?g. }
- W2021567244 abstract "Abstract Compositional reservoir simulation is the most powerful tool available to the reservoir engineer upon which, nowadays, most reservoir development decisions rely on. According to the number of components used to describe the fluids, there is a very high demand for computational power due to the complexity and to the iterative nature of the phase behavior problem solution process. Phase stability and phase split computations often consume more than 50% of the simulation's total CPU time as both problems need to be solved repeatedly for each discretization block at each iteration of the non-linear solver. Therefore, the speeding up of these calculations is a challenge of great interest. In this work, machine learning methods are proposed for the solving of the phase equilibrium problem. It is shown that by using proper transformations, the unknown closed-form solution of the Equation-of-State based formulation can be emulated by proxy models. The phase stability problem is treated by classifiers which label the fluid's state in each block as either stable or unstable. For the phase-split problem, regression models provide the prevailing equilibrium coefficients values given the feed composition, pressure and temperature. The development of both models is performed rapidly and offline in an automated way, by utilizing the fluid's tuned-EoS model, prior to running the reservoir simulator. During the simulation run, the proxy models are called to provide direct answers of the phase equilibrium problem at a very small CPU charge instead of solving iteratively the phase behavior problem. The proposed approach is presented in two-phase equilibria formulation but it can be extended to multi-phase equilibria applications. Examples demonstrate the accuracy of the calculations and the very significant CPU time reduction achieved with respect to currently used methods." @default.
- W2021567244 created "2016-06-24" @default.
- W2021567244 creator A5008889428 @default.
- W2021567244 creator A5047916287 @default.
- W2021567244 date "2012-06-04" @default.
- W2021567244 modified "2023-10-01" @default.
- W2021567244 title "Machine Learning Methods to Speed up Compositional Reservoir Simulation" @default.
- W2021567244 cites W1512098439 @default.
- W2021567244 cites W1563088657 @default.
- W2021567244 cites W1966227039 @default.
- W2021567244 cites W1969520681 @default.
- W2021567244 cites W1979995540 @default.
- W2021567244 cites W1992681681 @default.
- W2021567244 cites W2008041479 @default.
- W2021567244 cites W2015883867 @default.
- W2021567244 cites W2024046085 @default.
- W2021567244 cites W2033825518 @default.
- W2021567244 cites W2039820105 @default.
- W2021567244 cites W2052869809 @default.
- W2021567244 cites W2053582553 @default.
- W2021567244 cites W2061586430 @default.
- W2021567244 cites W2068405382 @default.
- W2021567244 cites W2073663142 @default.
- W2021567244 cites W2108995755 @default.
- W2021567244 cites W2116173306 @default.
- W2021567244 cites W2124290836 @default.
- W2021567244 cites W2130865380 @default.
- W2021567244 cites W2139212933 @default.
- W2021567244 cites W2139945542 @default.
- W2021567244 cites W2153635508 @default.
- W2021567244 cites W2155399784 @default.
- W2021567244 cites W2159350554 @default.
- W2021567244 cites W4234812453 @default.
- W2021567244 cites W4236137412 @default.
- W2021567244 cites W4300503707 @default.
- W2021567244 doi "https://doi.org/10.2118/154505-ms" @default.
- W2021567244 hasPublicationYear "2012" @default.
- W2021567244 type Work @default.
- W2021567244 sameAs 2021567244 @default.
- W2021567244 citedByCount "16" @default.
- W2021567244 countsByYear W20215672442014 @default.
- W2021567244 countsByYear W20215672442016 @default.
- W2021567244 countsByYear W20215672442018 @default.
- W2021567244 countsByYear W20215672442019 @default.
- W2021567244 countsByYear W20215672442020 @default.
- W2021567244 countsByYear W20215672442021 @default.
- W2021567244 countsByYear W20215672442022 @default.
- W2021567244 countsByYear W20215672442023 @default.
- W2021567244 crossrefType "proceedings-article" @default.
- W2021567244 hasAuthorship W2021567244A5008889428 @default.
- W2021567244 hasAuthorship W2021567244A5047916287 @default.
- W2021567244 hasConcept C11413529 @default.
- W2021567244 hasConcept C119857082 @default.
- W2021567244 hasConcept C126255220 @default.
- W2021567244 hasConcept C127313418 @default.
- W2021567244 hasConcept C134306372 @default.
- W2021567244 hasConcept C135796866 @default.
- W2021567244 hasConcept C147168706 @default.
- W2021567244 hasConcept C2524010 @default.
- W2021567244 hasConcept C2777210771 @default.
- W2021567244 hasConcept C2778668878 @default.
- W2021567244 hasConcept C2778770139 @default.
- W2021567244 hasConcept C33923547 @default.
- W2021567244 hasConcept C41008148 @default.
- W2021567244 hasConcept C45374587 @default.
- W2021567244 hasConcept C50644808 @default.
- W2021567244 hasConcept C73000952 @default.
- W2021567244 hasConcept C78762247 @default.
- W2021567244 hasConceptScore W2021567244C11413529 @default.
- W2021567244 hasConceptScore W2021567244C119857082 @default.
- W2021567244 hasConceptScore W2021567244C126255220 @default.
- W2021567244 hasConceptScore W2021567244C127313418 @default.
- W2021567244 hasConceptScore W2021567244C134306372 @default.
- W2021567244 hasConceptScore W2021567244C135796866 @default.
- W2021567244 hasConceptScore W2021567244C147168706 @default.
- W2021567244 hasConceptScore W2021567244C2524010 @default.
- W2021567244 hasConceptScore W2021567244C2777210771 @default.
- W2021567244 hasConceptScore W2021567244C2778668878 @default.
- W2021567244 hasConceptScore W2021567244C2778770139 @default.
- W2021567244 hasConceptScore W2021567244C33923547 @default.
- W2021567244 hasConceptScore W2021567244C41008148 @default.
- W2021567244 hasConceptScore W2021567244C45374587 @default.
- W2021567244 hasConceptScore W2021567244C50644808 @default.
- W2021567244 hasConceptScore W2021567244C73000952 @default.
- W2021567244 hasConceptScore W2021567244C78762247 @default.
- W2021567244 hasLocation W20215672441 @default.
- W2021567244 hasOpenAccess W2021567244 @default.
- W2021567244 hasPrimaryLocation W20215672441 @default.
- W2021567244 hasRelatedWork W106038526 @default.
- W2021567244 hasRelatedWork W1502717288 @default.
- W2021567244 hasRelatedWork W174808068 @default.
- W2021567244 hasRelatedWork W1991699250 @default.
- W2021567244 hasRelatedWork W2007647063 @default.
- W2021567244 hasRelatedWork W2037700381 @default.
- W2021567244 hasRelatedWork W2056200128 @default.
- W2021567244 hasRelatedWork W2147638105 @default.
- W2021567244 hasRelatedWork W2354062721 @default.
- W2021567244 hasRelatedWork W4223957745 @default.
- W2021567244 isParatext "false" @default.
- W2021567244 isRetracted "false" @default.