Matches in SemOpenAlex for { <https://semopenalex.org/work/W2021600105> ?p ?o ?g. }
- W2021600105 endingPage "1276" @default.
- W2021600105 startingPage "1265" @default.
- W2021600105 abstract "The previous four years have been a period of enormous discovery, growth and diversification in the mineral physics community. To underscore this point, several highlights of the U.S. research effort can be listed from a wide range of fields. Relatively young experimental methods have quickly matured and come to produce exceedingly important results; a prime example of this is the measurement of the elastic moduli of the β and γ high‐pressure phases of forsterite by Brillouin spectroscopy [Weidner et al., 1984; Sawamoto et al., 1984]. The technical capabilities of more established techniques have been considerably extended, with a spectacular example being provided by the attainment of a statically‐ maintained pressure of 550 GPa (5.5 Mbar) using a diamond anvil cell [Xu et. al, 1986]; this pressure far exceeds that in the center of the Earth! Moreover, existing static and dynamic high pressure technologies have been utilized in new and creative ways. A wide variety of spectroscopic methods are being used not only to measure the properties of materials, but also to precisely define the temperature and pressure conditions which are achieved within the small sample volume of a diamond anvil cell. The determinations of the melting points of Fe to 43 GPa [Boehler, 1986] and Mg .9 Fe .1 SiO 3 ‐perovskite to 60 GPa [Jeanloz and Heinz, 1984] are but two examples of how the diamond cell is being used to perform quantitative phase equilibrium measurements at ultrahigh pressures. Additional constraints on the phase relations of high‐pressure silicates are being provided by calorimetric measurements of thermochemical properties [e.g., Akaogi et al., 1984]. Complementary to these efforts are dynamic measurements of the sound velocity [Brown and McQueen, 1986] and temperature [Lyzenga et al., 1983] during shock wave experiments. Both of these variables are sensitive to phase transitions and have been used to constrain the phase diagrams of Fe and SiO 2 , respectively, at pressures ranging to hundreds of GPa. Another new application of shock wave methods has been in the measurement of the pressure‐density equation‐of‐state of silicate melts [Rigden et al., 1984], which gives experimental support to the interesting possibility of melts sinking, rather than rising, at depth in the mantle. Parallel to these experimental advances have been a series of theoretical efforts to model the equation‐of‐ state and stability of high‐pressure phases. First‐principles calculations were recently performed to investigate the high‐pressure equation‐of‐state of oxides [Hemley et al., 1985; Bukowinski, 1985], as well as structurally complex high‐pressure silicates such as perovskites [Wolf and Bukowinski, 1986], and are in broad agreement with available experimental data on crystal structures and physical properties." @default.
- W2021600105 created "2016-06-24" @default.
- W2021600105 creator A5066967648 @default.
- W2021600105 date "1987-07-01" @default.
- W2021600105 modified "2023-10-14" @default.
- W2021600105 title "Mineral and melt physics" @default.
- W2021600105 cites W130837552 @default.
- W2021600105 cites W133598244 @default.
- W2021600105 cites W1490518992 @default.
- W2021600105 cites W1504129400 @default.
- W2021600105 cites W1516476217 @default.
- W2021600105 cites W1532837778 @default.
- W2021600105 cites W1536458686 @default.
- W2021600105 cites W1552085258 @default.
- W2021600105 cites W1553185354 @default.
- W2021600105 cites W1569204637 @default.
- W2021600105 cites W1574640116 @default.
- W2021600105 cites W1579275447 @default.
- W2021600105 cites W1587407565 @default.
- W2021600105 cites W1593213903 @default.
- W2021600105 cites W1606495968 @default.
- W2021600105 cites W1621479489 @default.
- W2021600105 cites W1628908984 @default.
- W2021600105 cites W1636147643 @default.
- W2021600105 cites W1656884432 @default.
- W2021600105 cites W1674800755 @default.
- W2021600105 cites W16927646 @default.
- W2021600105 cites W1951299112 @default.
- W2021600105 cites W1965158002 @default.
- W2021600105 cites W1967107376 @default.
- W2021600105 cites W1968009233 @default.
- W2021600105 cites W1968480064 @default.
- W2021600105 cites W1968691913 @default.
- W2021600105 cites W1969027232 @default.
- W2021600105 cites W1970315446 @default.
- W2021600105 cites W1970534450 @default.
- W2021600105 cites W1970585110 @default.
- W2021600105 cites W1970918095 @default.
- W2021600105 cites W1972773998 @default.
- W2021600105 cites W1973178026 @default.
- W2021600105 cites W1973667803 @default.
- W2021600105 cites W1974014855 @default.
- W2021600105 cites W1974261172 @default.
- W2021600105 cites W1976014890 @default.
- W2021600105 cites W1976026815 @default.
- W2021600105 cites W1976444724 @default.
- W2021600105 cites W1977317164 @default.
- W2021600105 cites W1977409936 @default.
- W2021600105 cites W1977567065 @default.
- W2021600105 cites W1977853939 @default.
- W2021600105 cites W1978341154 @default.
- W2021600105 cites W1979238205 @default.
- W2021600105 cites W1979239223 @default.
- W2021600105 cites W1979798203 @default.
- W2021600105 cites W1979898446 @default.
- W2021600105 cites W1980265126 @default.
- W2021600105 cites W1980485755 @default.
- W2021600105 cites W1982966490 @default.
- W2021600105 cites W1984641597 @default.
- W2021600105 cites W1986799364 @default.
- W2021600105 cites W1987264662 @default.
- W2021600105 cites W1987686567 @default.
- W2021600105 cites W1988434720 @default.
- W2021600105 cites W1991012497 @default.
- W2021600105 cites W1991640093 @default.
- W2021600105 cites W1992062506 @default.
- W2021600105 cites W1992361865 @default.
- W2021600105 cites W1994042395 @default.
- W2021600105 cites W1994485371 @default.
- W2021600105 cites W1994985498 @default.
- W2021600105 cites W1997126459 @default.
- W2021600105 cites W1997186474 @default.
- W2021600105 cites W1997274081 @default.
- W2021600105 cites W1997934741 @default.
- W2021600105 cites W1999028200 @default.
- W2021600105 cites W2000954988 @default.
- W2021600105 cites W2001428578 @default.
- W2021600105 cites W2003923154 @default.
- W2021600105 cites W2006116846 @default.
- W2021600105 cites W2006758606 @default.
- W2021600105 cites W2006818967 @default.
- W2021600105 cites W2007019979 @default.
- W2021600105 cites W2007129007 @default.
- W2021600105 cites W2007141186 @default.
- W2021600105 cites W2007153521 @default.
- W2021600105 cites W2007219314 @default.
- W2021600105 cites W2007872494 @default.
- W2021600105 cites W2008459384 @default.
- W2021600105 cites W2010053086 @default.
- W2021600105 cites W2010613803 @default.
- W2021600105 cites W2011928338 @default.
- W2021600105 cites W2014191230 @default.
- W2021600105 cites W2014272162 @default.
- W2021600105 cites W2014525772 @default.
- W2021600105 cites W2015056229 @default.
- W2021600105 cites W2015933230 @default.
- W2021600105 cites W2016512185 @default.
- W2021600105 cites W2019326692 @default.