Matches in SemOpenAlex for { <https://semopenalex.org/work/W2021601097> ?p ?o ?g. }
- W2021601097 endingPage "3224" @default.
- W2021601097 startingPage "3217" @default.
- W2021601097 abstract "ConspectusKohn–Sham density functional theory offers a powerful and robust formalism for investigating the electronic structure of many-body systems while providing a practical balance of accuracy and computational cost unmatched by other methods. Despite this success, the commonly used semilocal approximations have difficulties in properly describing attractive dispersion interactions that decay with R–6 at large intermolecular distances. Even in the short to medium range, most semilocal density functionals fail to give an accurate description of weak interactions. The omnipresence of dispersion interactions, which are neglected in the most popular electronic structure framework, has stimulated intense developments during the past decade.In this Account, we summarize our effort to develop and implement dispersion corrections that dramatically reduce the failures of both inter- and intramolecular interaction energies. The proposed schemes range from improved variants of empirical atom pairwise dispersion correction (e.g., dD10) to robust formulations dependent upon the electron density. Emphasis has been placed on introducing more physics into a modified Tang and Toennies damping function and deriving accurate dispersion coefficients. Our most sophisticated and established density-dependent correction, dDsC, is based on a simple generalized gradient approximation (GGA)-like reformulation of the exchange hole dipole moment introduced by Becke and Johnson. Akin to its empirical precursor, dDsC dramatically improves the interaction energy of a variety of standard density functionals simultaneously for typical intermolecular complexes and shorter-range interactions occurring within molecules. The broad applicability and robustness of the dDsC scheme is demonstrated on various representative reaction energies, geometries, and molecular dynamic simulations. The suitability of the a posteriori correction is also established through comparisons with the more computationally demanding self-consistent implementation. The proposed correction is then exploited to identify the key factors at the origin of the errors in thermochemistry beyond van der Waals complexes. Particular focus is placed on charge-transfer and mixed-valence complexes, which are relevant to the field of organic electronics. These types of complexes represent insightful examples for which the delocalization error may partially counterbalance the missing dispersion. Our devised methodology reveals the true performance of standard density functional approximations and the subtle interplay between the two types of errors. The analysis presented provides guidance for future functional development that could further improve the modeling of the structures and properties of molecular materials. Overall, the proposed state-of-the-art approaches have contributed to stress the crucial role of dispersion and improve their description in both straightforward van der Waals complexes and more challenging chemical situations. For the treatment of the latter, we have also provided relevant insights into which type of density functionals to favor." @default.
- W2021601097 created "2016-06-24" @default.
- W2021601097 creator A5007563039 @default.
- W2021601097 date "2014-03-21" @default.
- W2021601097 modified "2023-10-16" @default.
- W2021601097 title "Minimizing Density Functional Failures for Non-Covalent Interactions Beyond van der Waals Complexes" @default.
- W2021601097 cites W1565582771 @default.
- W2021601097 cites W1968806724 @default.
- W2021601097 cites W1973069220 @default.
- W2021601097 cites W1976560707 @default.
- W2021601097 cites W1976863147 @default.
- W2021601097 cites W1978043118 @default.
- W2021601097 cites W1981264765 @default.
- W2021601097 cites W1982044891 @default.
- W2021601097 cites W1982595063 @default.
- W2021601097 cites W1984588429 @default.
- W2021601097 cites W1993397673 @default.
- W2021601097 cites W1996004755 @default.
- W2021601097 cites W2003691545 @default.
- W2021601097 cites W2005234587 @default.
- W2021601097 cites W2015358981 @default.
- W2021601097 cites W2017488631 @default.
- W2021601097 cites W2020072134 @default.
- W2021601097 cites W2021154578 @default.
- W2021601097 cites W2025587856 @default.
- W2021601097 cites W2026768679 @default.
- W2021601097 cites W2029350775 @default.
- W2021601097 cites W2034465848 @default.
- W2021601097 cites W2039323030 @default.
- W2021601097 cites W2040162984 @default.
- W2021601097 cites W2041321224 @default.
- W2021601097 cites W2043535587 @default.
- W2021601097 cites W2044591029 @default.
- W2021601097 cites W2048577460 @default.
- W2021601097 cites W2050480585 @default.
- W2021601097 cites W2051094745 @default.
- W2021601097 cites W2053394963 @default.
- W2021601097 cites W2053672862 @default.
- W2021601097 cites W2055041607 @default.
- W2021601097 cites W2059579773 @default.
- W2021601097 cites W2059885388 @default.
- W2021601097 cites W2063482580 @default.
- W2021601097 cites W2067447930 @default.
- W2021601097 cites W2069080629 @default.
- W2021601097 cites W2071278761 @default.
- W2021601097 cites W2071955309 @default.
- W2021601097 cites W2077138048 @default.
- W2021601097 cites W2080101773 @default.
- W2021601097 cites W2080709819 @default.
- W2021601097 cites W2092157292 @default.
- W2021601097 cites W2098985212 @default.
- W2021601097 cites W2101738309 @default.
- W2021601097 cites W2103064355 @default.
- W2021601097 cites W2103886684 @default.
- W2021601097 cites W2111533830 @default.
- W2021601097 cites W2112850441 @default.
- W2021601097 cites W2123387563 @default.
- W2021601097 cites W2141229276 @default.
- W2021601097 cites W2164827516 @default.
- W2021601097 cites W2314860728 @default.
- W2021601097 cites W2316928488 @default.
- W2021601097 cites W2330770860 @default.
- W2021601097 cites W2332371349 @default.
- W2021601097 cites W2950656254 @default.
- W2021601097 cites W3149826414 @default.
- W2021601097 cites W4361807724 @default.
- W2021601097 doi "https://doi.org/10.1021/ar400303a" @default.
- W2021601097 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24655016" @default.
- W2021601097 hasPublicationYear "2014" @default.
- W2021601097 type Work @default.
- W2021601097 sameAs 2021601097 @default.
- W2021601097 citedByCount "48" @default.
- W2021601097 countsByYear W20216010972014 @default.
- W2021601097 countsByYear W20216010972015 @default.
- W2021601097 countsByYear W20216010972016 @default.
- W2021601097 countsByYear W20216010972017 @default.
- W2021601097 countsByYear W20216010972018 @default.
- W2021601097 countsByYear W20216010972019 @default.
- W2021601097 countsByYear W20216010972020 @default.
- W2021601097 countsByYear W20216010972021 @default.
- W2021601097 countsByYear W20216010972022 @default.
- W2021601097 countsByYear W20216010972023 @default.
- W2021601097 crossrefType "journal-article" @default.
- W2021601097 hasAuthorship W2021601097A5007563039 @default.
- W2021601097 hasConcept C104317684 @default.
- W2021601097 hasConcept C121332964 @default.
- W2021601097 hasConcept C121864883 @default.
- W2021601097 hasConcept C126061179 @default.
- W2021601097 hasConcept C152365726 @default.
- W2021601097 hasConcept C166950319 @default.
- W2021601097 hasConcept C177562468 @default.
- W2021601097 hasConcept C185424724 @default.
- W2021601097 hasConcept C185592680 @default.
- W2021601097 hasConcept C32909587 @default.
- W2021601097 hasConcept C55493867 @default.
- W2021601097 hasConcept C62520636 @default.
- W2021601097 hasConcept C63479239 @default.
- W2021601097 hasConcept C75079739 @default.