Matches in SemOpenAlex for { <https://semopenalex.org/work/W2021639232> ?p ?o ?g. }
- W2021639232 endingPage "96" @default.
- W2021639232 startingPage "1387" @default.
- W2021639232 abstract "Colloidal inorganic nanocrystals are versatile nanoscale building blocks. Advances in their synthesis have yielded nanocrystals with various morphologies including spheres, polyhedra, rods, disks, sheets, wires, and a wide range of branched shapes. Recent developments in chemical methods have allowed the synthesis of colloidal nanocrystals made of sections of different inorganic materials connected together. Many research groups are investigating these nanocrystals' structural and photophysical properties experimentally and theoretically, and many have examined their prospects for commercial applications. Branched nanocrystals, in particular, are gaining attention, in part for their potential applications in solar cells or electronic devices. In this Account, we review recent developments in synthesis and controlled assembly of colloidal branched nanocrystals. Synthesis of branched nanocrystals builds on previous work with spherical nanocrystals and nanorods, but a unique factor is the need to control the branching event. Multiple arms can branch from a nucleus, or secondary branches can form from a growing arm. Branching can be governed by mechanisms including twinning, crystal splitting, polymorphism, oriented attachment, and others. One of the most relevant parameters is the choice of appropriate surfactant molecules, which can bind selectively to certain crystal facets or can even promote specific crystallographic phases during nucleation and growth. Also, seeded growth approaches recently have allowed great progress in the synthesis of nanocrystals with elaborate shapes. In this approach, nanocrystals with a specified chemical composition, size, shape, crystalline habit, and phase act as seeds on which multiple branches of a second material nucleate and grow. These approaches yield nanostructures with improved homogeneity in distribution of branch length and cross section. Ion exchange reactions allow further manipulation of branched nanocrystals by transforming crystals of one material into crystals with the same size, shape, and anion sublattice but with a new cation. Combining seeded growth with ion exchange provides a method for greatly expanding the library of branched nanocrystals. Assembly of morphologically complex nanocrystals is evolving in parallel to developments in chemical synthesis. While researchers have made many advances in the past decade in controlled assembly of nanocrystals with simple polyhedral shapes, modeling and experimental realization of ordered superstructures of branched nanocrystals are still in their infancy. In the only case of ordered superstructure reported so far, the assembly proceeds by steps in a hierarchical fashion, in analogy to several examples of assembly found in nature. Meanwhile, disordered assemblies of branched nanocrystals are also interesting and may find applications in various fields." @default.
- W2021639232 created "2016-06-24" @default.
- W2021639232 creator A5025956413 @default.
- W2021639232 creator A5028748218 @default.
- W2021639232 creator A5052720623 @default.
- W2021639232 date "2013-07-16" @default.
- W2021639232 modified "2023-10-16" @default.
- W2021639232 title "Colloidal branched semiconductor nanocrystals: state of the art and perspectives." @default.
- W2021639232 cites W1578283310 @default.
- W2021639232 cites W1964941216 @default.
- W2021639232 cites W1969303179 @default.
- W2021639232 cites W1970225494 @default.
- W2021639232 cites W1981311883 @default.
- W2021639232 cites W1983040489 @default.
- W2021639232 cites W1989787204 @default.
- W2021639232 cites W1990752779 @default.
- W2021639232 cites W1993306159 @default.
- W2021639232 cites W1993692189 @default.
- W2021639232 cites W2007941671 @default.
- W2021639232 cites W2008799652 @default.
- W2021639232 cites W2013726616 @default.
- W2021639232 cites W2014214402 @default.
- W2021639232 cites W2015050335 @default.
- W2021639232 cites W2016329600 @default.
- W2021639232 cites W2025306977 @default.
- W2021639232 cites W2029993047 @default.
- W2021639232 cites W2032265459 @default.
- W2021639232 cites W2032708368 @default.
- W2021639232 cites W2035500973 @default.
- W2021639232 cites W2036979179 @default.
- W2021639232 cites W2040066642 @default.
- W2021639232 cites W2040455495 @default.
- W2021639232 cites W2046839999 @default.
- W2021639232 cites W2047950754 @default.
- W2021639232 cites W2049752516 @default.
- W2021639232 cites W2050910308 @default.
- W2021639232 cites W2054621980 @default.
- W2021639232 cites W2055272909 @default.
- W2021639232 cites W2056305440 @default.
- W2021639232 cites W2059593126 @default.
- W2021639232 cites W2060039153 @default.
- W2021639232 cites W2060276685 @default.
- W2021639232 cites W2065982750 @default.
- W2021639232 cites W2067216972 @default.
- W2021639232 cites W2074188625 @default.
- W2021639232 cites W2074644185 @default.
- W2021639232 cites W2075154283 @default.
- W2021639232 cites W2075729871 @default.
- W2021639232 cites W2076439719 @default.
- W2021639232 cites W2076571348 @default.
- W2021639232 cites W2077188757 @default.
- W2021639232 cites W2088456998 @default.
- W2021639232 cites W2090426702 @default.
- W2021639232 cites W2090716448 @default.
- W2021639232 cites W2095718801 @default.
- W2021639232 cites W2101130956 @default.
- W2021639232 cites W2101326740 @default.
- W2021639232 cites W2126630891 @default.
- W2021639232 cites W2129279308 @default.
- W2021639232 cites W2143143016 @default.
- W2021639232 cites W2145650550 @default.
- W2021639232 cites W2146098292 @default.
- W2021639232 cites W2148269043 @default.
- W2021639232 cites W2158343197 @default.
- W2021639232 cites W2160248419 @default.
- W2021639232 cites W2319185173 @default.
- W2021639232 cites W2321069378 @default.
- W2021639232 cites W2323770425 @default.
- W2021639232 cites W2324944207 @default.
- W2021639232 cites W2326466986 @default.
- W2021639232 cites W2328114014 @default.
- W2021639232 cites W2329403678 @default.
- W2021639232 doi "https://doi.org/10.1021/ar3002409" @default.
- W2021639232 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23369428" @default.
- W2021639232 hasPublicationYear "2013" @default.
- W2021639232 type Work @default.
- W2021639232 sameAs 2021639232 @default.
- W2021639232 citedByCount "94" @default.
- W2021639232 countsByYear W20216392322013 @default.
- W2021639232 countsByYear W20216392322014 @default.
- W2021639232 countsByYear W20216392322015 @default.
- W2021639232 countsByYear W20216392322016 @default.
- W2021639232 countsByYear W20216392322017 @default.
- W2021639232 countsByYear W20216392322018 @default.
- W2021639232 countsByYear W20216392322019 @default.
- W2021639232 countsByYear W20216392322020 @default.
- W2021639232 countsByYear W20216392322021 @default.
- W2021639232 countsByYear W20216392322022 @default.
- W2021639232 countsByYear W20216392322023 @default.
- W2021639232 crossrefType "journal-article" @default.
- W2021639232 hasAuthorship W2021639232A5025956413 @default.
- W2021639232 hasAuthorship W2021639232A5028748218 @default.
- W2021639232 hasAuthorship W2021639232A5052720623 @default.
- W2021639232 hasConcept C126201875 @default.
- W2021639232 hasConcept C155672457 @default.
- W2021639232 hasConcept C159985019 @default.
- W2021639232 hasConcept C171250308 @default.
- W2021639232 hasConcept C175854130 @default.