Matches in SemOpenAlex for { <https://semopenalex.org/work/W2021796136> ?p ?o ?g. }
- W2021796136 endingPage "56" @default.
- W2021796136 startingPage "49" @default.
- W2021796136 abstract "A comparison of two multivariate calibration methods, partial least squares (PLS) and principal component regression (PCR), applied to high-performance liquid chromatography (HPLC) data, is presented for the resolution of a pesticide mixture. The data set showed both coeluted peaks and overlapped absorption spectra. Besides, there is an additional overlapping between the signal of the mobile phase and that of some pesticide. Multivariate calibration models were evaluated using different criteria to choose the optimum number of latent variables. It is shown that PLS yields the best predictive models. Furthermore, two methods for selecting regions were applied with the goal to achieve an improved prediction ability in the present multicomponent determination by HPLC-DAD (diode array detector) with PLS. The selection of regions associated with a large correlation to the concentration and with large values in loading-weighs (from PLS) were considered. It is concluded that feature selection can also improve the multivariate calibration results using chromatographic data." @default.
- W2021796136 created "2016-06-24" @default.
- W2021796136 creator A5040840779 @default.
- W2021796136 creator A5051037860 @default.
- W2021796136 creator A5069501547 @default.
- W2021796136 creator A5086199053 @default.
- W2021796136 date "2000-01-01" @default.
- W2021796136 modified "2023-10-13" @default.
- W2021796136 title "Comparison of Calibration Methods with and without Feature Selection for the Analysis of HPLC Data" @default.
- W2021796136 cites W1965730579 @default.
- W2021796136 cites W1965786603 @default.
- W2021796136 cites W1968871527 @default.
- W2021796136 cites W1970542683 @default.
- W2021796136 cites W1976042540 @default.
- W2021796136 cites W1982550399 @default.
- W2021796136 cites W1999870076 @default.
- W2021796136 cites W2001249256 @default.
- W2021796136 cites W2003302583 @default.
- W2021796136 cites W2005345572 @default.
- W2021796136 cites W2006898575 @default.
- W2021796136 cites W2012532282 @default.
- W2021796136 cites W2015870870 @default.
- W2021796136 cites W2016300835 @default.
- W2021796136 cites W2019303714 @default.
- W2021796136 cites W2036804696 @default.
- W2021796136 cites W2040017409 @default.
- W2021796136 cites W2043633763 @default.
- W2021796136 cites W2053032284 @default.
- W2021796136 cites W2053747578 @default.
- W2021796136 cites W2065775128 @default.
- W2021796136 cites W2068530006 @default.
- W2021796136 cites W2073292784 @default.
- W2021796136 cites W2074431741 @default.
- W2021796136 cites W2084169316 @default.
- W2021796136 cites W2084559921 @default.
- W2021796136 cites W2086936642 @default.
- W2021796136 cites W2102667102 @default.
- W2021796136 cites W2106489491 @default.
- W2021796136 cites W2118868944 @default.
- W2021796136 cites W2142950601 @default.
- W2021796136 cites W2143258100 @default.
- W2021796136 cites W2319399087 @default.
- W2021796136 cites W2410817137 @default.
- W2021796136 cites W2471604348 @default.
- W2021796136 doi "https://doi.org/10.2116/analsci.16.49" @default.
- W2021796136 hasPublicationYear "2000" @default.
- W2021796136 type Work @default.
- W2021796136 sameAs 2021796136 @default.
- W2021796136 citedByCount "12" @default.
- W2021796136 countsByYear W20217961362012 @default.
- W2021796136 countsByYear W20217961362015 @default.
- W2021796136 countsByYear W20217961362016 @default.
- W2021796136 countsByYear W20217961362018 @default.
- W2021796136 crossrefType "journal-article" @default.
- W2021796136 hasAuthorship W2021796136A5040840779 @default.
- W2021796136 hasAuthorship W2021796136A5051037860 @default.
- W2021796136 hasAuthorship W2021796136A5069501547 @default.
- W2021796136 hasAuthorship W2021796136A5086199053 @default.
- W2021796136 hasConcept C105795698 @default.
- W2021796136 hasConcept C113196181 @default.
- W2021796136 hasConcept C148483581 @default.
- W2021796136 hasConcept C151304367 @default.
- W2021796136 hasConcept C153180895 @default.
- W2021796136 hasConcept C154945302 @default.
- W2021796136 hasConcept C161584116 @default.
- W2021796136 hasConcept C165838908 @default.
- W2021796136 hasConcept C179998833 @default.
- W2021796136 hasConcept C185592680 @default.
- W2021796136 hasConcept C186060115 @default.
- W2021796136 hasConcept C22354355 @default.
- W2021796136 hasConcept C27438332 @default.
- W2021796136 hasConcept C33923547 @default.
- W2021796136 hasConcept C41008148 @default.
- W2021796136 hasConcept C43617362 @default.
- W2021796136 hasConcept C58489278 @default.
- W2021796136 hasConcept C74887250 @default.
- W2021796136 hasConcept C81917197 @default.
- W2021796136 hasConcept C86803240 @default.
- W2021796136 hasConceptScore W2021796136C105795698 @default.
- W2021796136 hasConceptScore W2021796136C113196181 @default.
- W2021796136 hasConceptScore W2021796136C148483581 @default.
- W2021796136 hasConceptScore W2021796136C151304367 @default.
- W2021796136 hasConceptScore W2021796136C153180895 @default.
- W2021796136 hasConceptScore W2021796136C154945302 @default.
- W2021796136 hasConceptScore W2021796136C161584116 @default.
- W2021796136 hasConceptScore W2021796136C165838908 @default.
- W2021796136 hasConceptScore W2021796136C179998833 @default.
- W2021796136 hasConceptScore W2021796136C185592680 @default.
- W2021796136 hasConceptScore W2021796136C186060115 @default.
- W2021796136 hasConceptScore W2021796136C22354355 @default.
- W2021796136 hasConceptScore W2021796136C27438332 @default.
- W2021796136 hasConceptScore W2021796136C33923547 @default.
- W2021796136 hasConceptScore W2021796136C41008148 @default.
- W2021796136 hasConceptScore W2021796136C43617362 @default.
- W2021796136 hasConceptScore W2021796136C58489278 @default.
- W2021796136 hasConceptScore W2021796136C74887250 @default.
- W2021796136 hasConceptScore W2021796136C81917197 @default.
- W2021796136 hasConceptScore W2021796136C86803240 @default.