Matches in SemOpenAlex for { <https://semopenalex.org/work/W2021819661> ?p ?o ?g. }
- W2021819661 endingPage "403" @default.
- W2021819661 startingPage "395" @default.
- W2021819661 abstract "Natural attenuation (NA) processes occurring in the subsurface can significantly affect the impact on groundwater from contamination sources located in the vadose zone, especially when mobile and readily biodegradable compounds, such as BTEX, are present. Besides, in the last decades several studies have shown natural attenuation to take place also for more persistent compounds, such as Polycyclic Aromatic Hydrocarbons (PAHs). Nevertheless, common risk analysis frameworks, based on the ASTM RBCA (Risk Based Corrective Action) approach, do not include NA pathways in the fate and transport models, thus possibly leading to an overestimation of the calculated risk. The aim of this study was to provide an insight on the relevance of the different key natural attenuation processes usually taking place in the subsurface and to highlight for which contamination scenarios their inclusion in the risk-analysis framework could provide a more realistic risk assessment. To this end, an analytical model accounting for source depletion and biodegradation, dispersion and diffusion during leaching was developed and applied to several contamination scenarios. These scenarios included contamination by BTEX, characterized by relatively high mobility and biodegradation rate, and PAHs, i.e. a more persistent class of compounds. The obtained results showed that BTEX are likely to be attenuated in the source zone due to their mobility and ready biodegradation (assuming biodegradation constant rates in the order of 0.01–1 d−1). Instead, attenuation along transport through the vadose zone was found to be less important, as the residence time of the contaminant in the unsaturated zone is often too low with respect to the time required to get a relevant biodegradation of BTEX. On the other hand, heavier compounds such as PAHs, were found to be attenuated during leaching since the residence time in the vadose zone can reach values up to thousands of years. In these cases, even with the relatively slow biodegradation rate of PAHs, in the order of 0.0001–0.001 d−1, attenuation can result significant. These conclusions were also confirmed by comparing the model results with experimental data collected at an hydrocarbon-contaminated site. The proposed model, that neglects the transport of NAPLs, could be easily included in the risk-analysis framework, allowing to get a more realistic assessment of risks, while keeping the intrinsic simplicity of the ASTM-RBCA approach." @default.
- W2021819661 created "2016-06-24" @default.
- W2021819661 creator A5013028130 @default.
- W2021819661 creator A5034031013 @default.
- W2021819661 date "2013-01-01" @default.
- W2021819661 modified "2023-09-26" @default.
- W2021819661 title "Role of natural attenuation in modeling the leaching of contaminants in the risk analysis framework" @default.
- W2021819661 cites W1968798003 @default.
- W2021819661 cites W1969425517 @default.
- W2021819661 cites W1972146772 @default.
- W2021819661 cites W1978875698 @default.
- W2021819661 cites W1982845185 @default.
- W2021819661 cites W1985788390 @default.
- W2021819661 cites W1992265621 @default.
- W2021819661 cites W2002830657 @default.
- W2021819661 cites W2004320439 @default.
- W2021819661 cites W2006351446 @default.
- W2021819661 cites W2006905549 @default.
- W2021819661 cites W2012247054 @default.
- W2021819661 cites W2012570719 @default.
- W2021819661 cites W2014235304 @default.
- W2021819661 cites W2036354341 @default.
- W2021819661 cites W2054170160 @default.
- W2021819661 cites W2084819196 @default.
- W2021819661 cites W2093750977 @default.
- W2021819661 cites W2098908557 @default.
- W2021819661 cites W2110064907 @default.
- W2021819661 cites W2117066184 @default.
- W2021819661 cites W2121931131 @default.
- W2021819661 cites W2132171378 @default.
- W2021819661 cites W2143914248 @default.
- W2021819661 cites W88341253 @default.
- W2021819661 doi "https://doi.org/10.1016/j.jenvman.2012.10.035" @default.
- W2021819661 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23186723" @default.
- W2021819661 hasPublicationYear "2013" @default.
- W2021819661 type Work @default.
- W2021819661 sameAs 2021819661 @default.
- W2021819661 citedByCount "29" @default.
- W2021819661 countsByYear W20218196612013 @default.
- W2021819661 countsByYear W20218196612014 @default.
- W2021819661 countsByYear W20218196612015 @default.
- W2021819661 countsByYear W20218196612016 @default.
- W2021819661 countsByYear W20218196612017 @default.
- W2021819661 countsByYear W20218196612018 @default.
- W2021819661 countsByYear W20218196612019 @default.
- W2021819661 countsByYear W20218196612020 @default.
- W2021819661 countsByYear W20218196612021 @default.
- W2021819661 countsByYear W20218196612023 @default.
- W2021819661 crossrefType "journal-article" @default.
- W2021819661 hasAuthorship W2021819661A5013028130 @default.
- W2021819661 hasAuthorship W2021819661A5034031013 @default.
- W2021819661 hasConcept C107872376 @default.
- W2021819661 hasConcept C112570922 @default.
- W2021819661 hasConcept C120665830 @default.
- W2021819661 hasConcept C121332964 @default.
- W2021819661 hasConcept C127313418 @default.
- W2021819661 hasConcept C157021035 @default.
- W2021819661 hasConcept C159390177 @default.
- W2021819661 hasConcept C159750122 @default.
- W2021819661 hasConcept C178790620 @default.
- W2021819661 hasConcept C184652730 @default.
- W2021819661 hasConcept C185592680 @default.
- W2021819661 hasConcept C187320778 @default.
- W2021819661 hasConcept C18903297 @default.
- W2021819661 hasConcept C2777691172 @default.
- W2021819661 hasConcept C2778519274 @default.
- W2021819661 hasConcept C2779896714 @default.
- W2021819661 hasConcept C35588792 @default.
- W2021819661 hasConcept C39432304 @default.
- W2021819661 hasConcept C76177295 @default.
- W2021819661 hasConcept C86803240 @default.
- W2021819661 hasConcept C87717796 @default.
- W2021819661 hasConcept C90982505 @default.
- W2021819661 hasConceptScore W2021819661C107872376 @default.
- W2021819661 hasConceptScore W2021819661C112570922 @default.
- W2021819661 hasConceptScore W2021819661C120665830 @default.
- W2021819661 hasConceptScore W2021819661C121332964 @default.
- W2021819661 hasConceptScore W2021819661C127313418 @default.
- W2021819661 hasConceptScore W2021819661C157021035 @default.
- W2021819661 hasConceptScore W2021819661C159390177 @default.
- W2021819661 hasConceptScore W2021819661C159750122 @default.
- W2021819661 hasConceptScore W2021819661C178790620 @default.
- W2021819661 hasConceptScore W2021819661C184652730 @default.
- W2021819661 hasConceptScore W2021819661C185592680 @default.
- W2021819661 hasConceptScore W2021819661C187320778 @default.
- W2021819661 hasConceptScore W2021819661C18903297 @default.
- W2021819661 hasConceptScore W2021819661C2777691172 @default.
- W2021819661 hasConceptScore W2021819661C2778519274 @default.
- W2021819661 hasConceptScore W2021819661C2779896714 @default.
- W2021819661 hasConceptScore W2021819661C35588792 @default.
- W2021819661 hasConceptScore W2021819661C39432304 @default.
- W2021819661 hasConceptScore W2021819661C76177295 @default.
- W2021819661 hasConceptScore W2021819661C86803240 @default.
- W2021819661 hasConceptScore W2021819661C87717796 @default.
- W2021819661 hasConceptScore W2021819661C90982505 @default.
- W2021819661 hasLocation W20218196611 @default.
- W2021819661 hasLocation W20218196612 @default.
- W2021819661 hasOpenAccess W2021819661 @default.