Matches in SemOpenAlex for { <https://semopenalex.org/work/W2021823710> ?p ?o ?g. }
- W2021823710 endingPage "1429" @default.
- W2021823710 startingPage "1420" @default.
- W2021823710 abstract "There are few analytic tools available to formally integrate information coming from population surveys and demographic studies. The Kalman filter is a procedure that facilitates such integration. Based on a state−space model, we can obtain a likelihood function for the survey data using a Kalman filter, which we may then combine with a likelihood for the demographic data. In this paper, we used this combined approach to analyze the population dynamics of a hunted species, the Greater Snow Goose (Chen caerulescens atlantica), and to examine the extent to which it can improve previous demographic population models. The state equation of the state−space model was a matrix population model with fecundity and regression parameters relating adult survival and harvest rate estimated in a previous capture−recapture study. The observation equation combined the output from this model with estimates from an annual spring photographic survey of the population. The maximum likelihood estimates of the regression parameters from the combined analysis differed little from the values of the original capture−recapture analysis, though their precision improved. The model output was found to be insensitive to a wide range of coefficient of variation (CV) in fecundity parameters. We found a close match between the surveyed and smoothed population size estimates generated by the Kalman filter over an 18-year period, and the estimated CV of the survey (0.078−0.150) was quite compatible with its assumed value (∼0.10). When we used the updated parameter values to predict future population size, the model underestimated the surveyed population size by 18% over a three-year period. However, this could be explained by a concurrent change in the survey method. We conclude that the Kalman filter is a promising approach to forecast population change because it incorporates survey information in a formal way compared with ad hoc approaches that either neglect this information or require some parameter or model tuning." @default.
- W2021823710 created "2016-06-24" @default.
- W2021823710 creator A5001604829 @default.
- W2021823710 creator A5045296286 @default.
- W2021823710 creator A5056911184 @default.
- W2021823710 creator A5075033576 @default.
- W2021823710 date "2007-06-01" @default.
- W2021823710 modified "2023-09-30" @default.
- W2021823710 title "POPULATION GROWTH IN SNOW GEESE: A MODELING APPROACH INTEGRATING DEMOGRAPHIC AND SURVEY INFORMATION" @default.
- W2021823710 cites W1491025188 @default.
- W2021823710 cites W1532752482 @default.
- W2021823710 cites W1965718955 @default.
- W2021823710 cites W1972840004 @default.
- W2021823710 cites W1978789647 @default.
- W2021823710 cites W1996414544 @default.
- W2021823710 cites W2002646551 @default.
- W2021823710 cites W2011631837 @default.
- W2021823710 cites W2013650173 @default.
- W2021823710 cites W2014093779 @default.
- W2021823710 cites W2015050996 @default.
- W2021823710 cites W2016118262 @default.
- W2021823710 cites W2018317586 @default.
- W2021823710 cites W2029937552 @default.
- W2021823710 cites W2030042841 @default.
- W2021823710 cites W2047495451 @default.
- W2021823710 cites W2055695965 @default.
- W2021823710 cites W2071603030 @default.
- W2021823710 cites W2077803664 @default.
- W2021823710 cites W2080144695 @default.
- W2021823710 cites W2083155027 @default.
- W2021823710 cites W2099538683 @default.
- W2021823710 cites W2105934661 @default.
- W2021823710 cites W2107650607 @default.
- W2021823710 cites W2128243806 @default.
- W2021823710 cites W2132689813 @default.
- W2021823710 cites W2137604749 @default.
- W2021823710 cites W2162941590 @default.
- W2021823710 cites W2171612063 @default.
- W2021823710 cites W2175528705 @default.
- W2021823710 cites W2315658326 @default.
- W2021823710 cites W2323218201 @default.
- W2021823710 doi "https://doi.org/10.1890/06-0953" @default.
- W2021823710 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/17601135" @default.
- W2021823710 hasPublicationYear "2007" @default.
- W2021823710 type Work @default.
- W2021823710 sameAs 2021823710 @default.
- W2021823710 citedByCount "44" @default.
- W2021823710 countsByYear W20218237102012 @default.
- W2021823710 countsByYear W20218237102013 @default.
- W2021823710 countsByYear W20218237102014 @default.
- W2021823710 countsByYear W20218237102015 @default.
- W2021823710 countsByYear W20218237102016 @default.
- W2021823710 countsByYear W20218237102017 @default.
- W2021823710 countsByYear W20218237102018 @default.
- W2021823710 countsByYear W20218237102019 @default.
- W2021823710 countsByYear W20218237102020 @default.
- W2021823710 countsByYear W20218237102021 @default.
- W2021823710 countsByYear W20218237102022 @default.
- W2021823710 countsByYear W20218237102023 @default.
- W2021823710 crossrefType "journal-article" @default.
- W2021823710 hasAuthorship W2021823710A5001604829 @default.
- W2021823710 hasAuthorship W2021823710A5045296286 @default.
- W2021823710 hasAuthorship W2021823710A5056911184 @default.
- W2021823710 hasAuthorship W2021823710A5075033576 @default.
- W2021823710 hasConcept C105795698 @default.
- W2021823710 hasConcept C127413603 @default.
- W2021823710 hasConcept C144024400 @default.
- W2021823710 hasConcept C146978453 @default.
- W2021823710 hasConcept C149782125 @default.
- W2021823710 hasConcept C149923435 @default.
- W2021823710 hasConcept C152877465 @default.
- W2021823710 hasConcept C157286648 @default.
- W2021823710 hasConcept C169733012 @default.
- W2021823710 hasConcept C18903297 @default.
- W2021823710 hasConcept C204323151 @default.
- W2021823710 hasConcept C205649164 @default.
- W2021823710 hasConcept C2780507753 @default.
- W2021823710 hasConcept C2908647359 @default.
- W2021823710 hasConcept C33923547 @default.
- W2021823710 hasConcept C36528806 @default.
- W2021823710 hasConcept C52079815 @default.
- W2021823710 hasConcept C67283656 @default.
- W2021823710 hasConcept C77352025 @default.
- W2021823710 hasConcept C83546350 @default.
- W2021823710 hasConcept C86803240 @default.
- W2021823710 hasConceptScore W2021823710C105795698 @default.
- W2021823710 hasConceptScore W2021823710C127413603 @default.
- W2021823710 hasConceptScore W2021823710C144024400 @default.
- W2021823710 hasConceptScore W2021823710C146978453 @default.
- W2021823710 hasConceptScore W2021823710C149782125 @default.
- W2021823710 hasConceptScore W2021823710C149923435 @default.
- W2021823710 hasConceptScore W2021823710C152877465 @default.
- W2021823710 hasConceptScore W2021823710C157286648 @default.
- W2021823710 hasConceptScore W2021823710C169733012 @default.
- W2021823710 hasConceptScore W2021823710C18903297 @default.
- W2021823710 hasConceptScore W2021823710C204323151 @default.
- W2021823710 hasConceptScore W2021823710C205649164 @default.
- W2021823710 hasConceptScore W2021823710C2780507753 @default.