Matches in SemOpenAlex for { <https://semopenalex.org/work/W2021864104> ?p ?o ?g. }
- W2021864104 endingPage "2334" @default.
- W2021864104 startingPage "2327" @default.
- W2021864104 abstract "Maximum margin criterion (MMC) based feature extraction is more efficient than linear discriminant analysis (LDA) for calculating the discriminant vectors since it does not need to calculate the inverse within-class scatter matrix. However, MMC ignores the discriminative information within the local structures of samples and the structural information embedding in the images. In this paper, we develop a novel criterion, namely Laplacian bidirectional maximum margin criterion (LBMMC), to address the issue. We formulate the image total Laplacian matrix, image within-class Laplacian matrix and image between-class Laplacian matrix using the sample similar weight that is widely used in machine learning. The proposed LBMMC based feature extraction computes the discriminant vectors by maximizing the difference between image between-class Laplacian matrix and image within-class Laplacian matrix in both row and column directions. Experiments on the FERET and Yale face databases show the effectiveness of the proposed LBMMC based feature extraction method." @default.
- W2021864104 created "2016-06-24" @default.
- W2021864104 creator A5012309357 @default.
- W2021864104 creator A5013704354 @default.
- W2021864104 creator A5033694378 @default.
- W2021864104 creator A5041739049 @default.
- W2021864104 creator A5063288559 @default.
- W2021864104 creator A5073078602 @default.
- W2021864104 date "2009-11-01" @default.
- W2021864104 modified "2023-10-18" @default.
- W2021864104 title "Feature extraction based on Laplacian bidirectional maximum margin criterion" @default.
- W2021864104 cites W189912361 @default.
- W2021864104 cites W1974097586 @default.
- W2021864104 cites W1983772724 @default.
- W2021864104 cites W1985809919 @default.
- W2021864104 cites W2001141328 @default.
- W2021864104 cites W2002645541 @default.
- W2021864104 cites W2003860694 @default.
- W2021864104 cites W2009596443 @default.
- W2021864104 cites W2012352340 @default.
- W2021864104 cites W2014243800 @default.
- W2021864104 cites W2025671805 @default.
- W2021864104 cites W2033419168 @default.
- W2021864104 cites W2038165640 @default.
- W2021864104 cites W2053186076 @default.
- W2021864104 cites W2070110734 @default.
- W2021864104 cites W2082783427 @default.
- W2021864104 cites W2088900896 @default.
- W2021864104 cites W2089322632 @default.
- W2021864104 cites W2090341258 @default.
- W2021864104 cites W2095469431 @default.
- W2021864104 cites W2097308346 @default.
- W2021864104 cites W2102544846 @default.
- W2021864104 cites W2105055468 @default.
- W2021864104 cites W2107871762 @default.
- W2021864104 cites W2111149694 @default.
- W2021864104 cites W2117553576 @default.
- W2021864104 cites W2120886275 @default.
- W2021864104 cites W2121647436 @default.
- W2021864104 cites W2127409454 @default.
- W2021864104 cites W2130972944 @default.
- W2021864104 cites W2133215220 @default.
- W2021864104 cites W2134262590 @default.
- W2021864104 cites W2135463994 @default.
- W2021864104 cites W2143103810 @default.
- W2021864104 cites W2145309677 @default.
- W2021864104 cites W2149737612 @default.
- W2021864104 cites W2149824585 @default.
- W2021864104 cites W2154624311 @default.
- W2021864104 cites W2158281641 @default.
- W2021864104 cites W2163516157 @default.
- W2021864104 cites W2166213322 @default.
- W2021864104 cites W3148981562 @default.
- W2021864104 cites W4229749918 @default.
- W2021864104 cites W4233372644 @default.
- W2021864104 cites W4238240379 @default.
- W2021864104 cites W7299809 @default.
- W2021864104 doi "https://doi.org/10.1016/j.patcog.2009.03.017" @default.
- W2021864104 hasPublicationYear "2009" @default.
- W2021864104 type Work @default.
- W2021864104 sameAs 2021864104 @default.
- W2021864104 citedByCount "69" @default.
- W2021864104 countsByYear W20218641042012 @default.
- W2021864104 countsByYear W20218641042013 @default.
- W2021864104 countsByYear W20218641042014 @default.
- W2021864104 countsByYear W20218641042015 @default.
- W2021864104 countsByYear W20218641042016 @default.
- W2021864104 countsByYear W20218641042017 @default.
- W2021864104 countsByYear W20218641042018 @default.
- W2021864104 countsByYear W20218641042019 @default.
- W2021864104 crossrefType "journal-article" @default.
- W2021864104 hasAuthorship W2021864104A5012309357 @default.
- W2021864104 hasAuthorship W2021864104A5013704354 @default.
- W2021864104 hasAuthorship W2021864104A5033694378 @default.
- W2021864104 hasAuthorship W2021864104A5041739049 @default.
- W2021864104 hasAuthorship W2021864104A5063288559 @default.
- W2021864104 hasAuthorship W2021864104A5073078602 @default.
- W2021864104 hasConcept C106487976 @default.
- W2021864104 hasConcept C11413529 @default.
- W2021864104 hasConcept C115178988 @default.
- W2021864104 hasConcept C115961682 @default.
- W2021864104 hasConcept C119857082 @default.
- W2021864104 hasConcept C134306372 @default.
- W2021864104 hasConcept C138885662 @default.
- W2021864104 hasConcept C153180895 @default.
- W2021864104 hasConcept C154945302 @default.
- W2021864104 hasConcept C159985019 @default.
- W2021864104 hasConcept C165700671 @default.
- W2021864104 hasConcept C176917957 @default.
- W2021864104 hasConcept C180877172 @default.
- W2021864104 hasConcept C185142706 @default.
- W2021864104 hasConcept C192562407 @default.
- W2021864104 hasConcept C2776401178 @default.
- W2021864104 hasConcept C33923547 @default.
- W2021864104 hasConcept C41008148 @default.
- W2021864104 hasConcept C41895202 @default.
- W2021864104 hasConcept C52622490 @default.
- W2021864104 hasConcept C69738355 @default.