Matches in SemOpenAlex for { <https://semopenalex.org/work/W2021873876> ?p ?o ?g. }
- W2021873876 endingPage "1030" @default.
- W2021873876 startingPage "1018" @default.
- W2021873876 abstract "Flood events consist of flood peaks and flood volumes that are mutually correlated and need to be described by multivariate analysis methods, of which the copula functions are most desirable. Until now, the multivariate flood frequency analysis methods based on copulas does not consider the historical floods or paleological information. This may underestimate or overestimate the flood quantiles or conditional probabilities corresponding to high return periods, especially when the length of gauged record data series is relatively short. In this paper, a modified inference functions for margins (MIFM) method is proposed and used to estimate the parameters of both marginal distribution and joint distribution with incorporation of historical information. The conditional probabilities of flood volumes given that the peak discharge exceeding various values were derived. The Three Gorges reservoir (TGR) in China was selected as a case study. The bivariate flood quantiles were obtained based on bivariate return period and compared with current univariate design values. It is shown that the proposed method provides an alternative way for multivariate frequency analysis with historical information." @default.
- W2021873876 created "2016-06-24" @default.
- W2021873876 creator A5002795351 @default.
- W2021873876 creator A5068171379 @default.
- W2021873876 creator A5070932307 @default.
- W2021873876 creator A5080280100 @default.
- W2021873876 date "2013-08-01" @default.
- W2021873876 modified "2023-10-05" @default.
- W2021873876 title "Bivariate Flood Frequency Analysis with Historical Information Based on Copula" @default.
- W2021873876 cites W1488796176 @default.
- W2021873876 cites W1529285559 @default.
- W2021873876 cites W1544662260 @default.
- W2021873876 cites W1624356652 @default.
- W2021873876 cites W1651792978 @default.
- W2021873876 cites W1930398149 @default.
- W2021873876 cites W1964791292 @default.
- W2021873876 cites W1970102934 @default.
- W2021873876 cites W1972882514 @default.
- W2021873876 cites W1976679934 @default.
- W2021873876 cites W1983599285 @default.
- W2021873876 cites W1988890836 @default.
- W2021873876 cites W1994508778 @default.
- W2021873876 cites W2000534429 @default.
- W2021873876 cites W2005210873 @default.
- W2021873876 cites W2015339214 @default.
- W2021873876 cites W2037227481 @default.
- W2021873876 cites W2047364883 @default.
- W2021873876 cites W2048552837 @default.
- W2021873876 cites W2054865689 @default.
- W2021873876 cites W2057110654 @default.
- W2021873876 cites W2059049776 @default.
- W2021873876 cites W2065342138 @default.
- W2021873876 cites W2065575561 @default.
- W2021873876 cites W2067029314 @default.
- W2021873876 cites W2069389984 @default.
- W2021873876 cites W2072386594 @default.
- W2021873876 cites W2073187170 @default.
- W2021873876 cites W2073622612 @default.
- W2021873876 cites W2077725660 @default.
- W2021873876 cites W2089234868 @default.
- W2021873876 cites W2090337025 @default.
- W2021873876 cites W2090700163 @default.
- W2021873876 cites W2096128876 @default.
- W2021873876 cites W2098280243 @default.
- W2021873876 cites W2101405122 @default.
- W2021873876 cites W2137848529 @default.
- W2021873876 cites W2139660762 @default.
- W2021873876 cites W2149923950 @default.
- W2021873876 cites W2507039649 @default.
- W2021873876 cites W3042541703 @default.
- W2021873876 cites W4235564685 @default.
- W2021873876 cites W4239690097 @default.
- W2021873876 cites W4242161122 @default.
- W2021873876 doi "https://doi.org/10.1061/(asce)he.1943-5584.0000684" @default.
- W2021873876 hasPublicationYear "2013" @default.
- W2021873876 type Work @default.
- W2021873876 sameAs 2021873876 @default.
- W2021873876 citedByCount "47" @default.
- W2021873876 countsByYear W20218738762014 @default.
- W2021873876 countsByYear W20218738762015 @default.
- W2021873876 countsByYear W20218738762016 @default.
- W2021873876 countsByYear W20218738762017 @default.
- W2021873876 countsByYear W20218738762018 @default.
- W2021873876 countsByYear W20218738762019 @default.
- W2021873876 countsByYear W20218738762020 @default.
- W2021873876 countsByYear W20218738762021 @default.
- W2021873876 countsByYear W20218738762022 @default.
- W2021873876 countsByYear W20218738762023 @default.
- W2021873876 crossrefType "journal-article" @default.
- W2021873876 hasAuthorship W2021873876A5002795351 @default.
- W2021873876 hasAuthorship W2021873876A5068171379 @default.
- W2021873876 hasAuthorship W2021873876A5070932307 @default.
- W2021873876 hasAuthorship W2021873876A5080280100 @default.
- W2021873876 hasConcept C105795698 @default.
- W2021873876 hasConcept C118671147 @default.
- W2021873876 hasConcept C122123141 @default.
- W2021873876 hasConcept C149782125 @default.
- W2021873876 hasConcept C154945302 @default.
- W2021873876 hasConcept C161584116 @default.
- W2021873876 hasConcept C165216359 @default.
- W2021873876 hasConcept C166957645 @default.
- W2021873876 hasConcept C17618745 @default.
- W2021873876 hasConcept C18653775 @default.
- W2021873876 hasConcept C199163554 @default.
- W2021873876 hasConcept C205649164 @default.
- W2021873876 hasConcept C2776214188 @default.
- W2021873876 hasConcept C33923547 @default.
- W2021873876 hasConcept C38180746 @default.
- W2021873876 hasConcept C41008148 @default.
- W2021873876 hasConcept C64341305 @default.
- W2021873876 hasConcept C74256435 @default.
- W2021873876 hasConcept C75007070 @default.
- W2021873876 hasConcept C97118885 @default.
- W2021873876 hasConceptScore W2021873876C105795698 @default.
- W2021873876 hasConceptScore W2021873876C118671147 @default.
- W2021873876 hasConceptScore W2021873876C122123141 @default.
- W2021873876 hasConceptScore W2021873876C149782125 @default.
- W2021873876 hasConceptScore W2021873876C154945302 @default.