Matches in SemOpenAlex for { <https://semopenalex.org/work/W2021960928> ?p ?o ?g. }
- W2021960928 endingPage "291" @default.
- W2021960928 startingPage "266" @default.
- W2021960928 abstract "The problem of estimating a spatially distributed process described by a partial differential equation (PDE), whose observations are contaminated by a zero mean Gaussian noise, is considered in this work. The basic premise of this work is that a set of mobile sensors achieve better estimation performance than a set of immobile sensors. To enhance the performance of the state estimator, a network of sensors that are capable of moving within the spatial domain is utilized. Specifically, such an estimation process is achieved by using a set of spatially distributed mobile sensors. The objective is to provide mobile sensor control policies that aim to improve the state estimate. The metric for such an estimate improvement is taken to be the expected state estimation error. Using different spatial norms, two guidance policies are proposed. The current approach capitalizes on the efficient filter gain design in order to avoid intense computational requirements resulting from the solution to filter Riccati equations. Simulation studies implementing and comparing the two proposed control policies are provided." @default.
- W2021960928 created "2016-06-24" @default.
- W2021960928 creator A5025847033 @default.
- W2021960928 creator A5062696404 @default.
- W2021960928 date "2009-01-01" @default.
- W2021960928 modified "2023-10-03" @default.
- W2021960928 title "Estimation of Spatially Distributed Processes Using Mobile Spatially Distributed Sensor Network" @default.
- W2021960928 cites W1544032329 @default.
- W2021960928 cites W1965275530 @default.
- W2021960928 cites W1993368704 @default.
- W2021960928 cites W1994703549 @default.
- W2021960928 cites W1995301510 @default.
- W2021960928 cites W2002265734 @default.
- W2021960928 cites W2011450427 @default.
- W2021960928 cites W2012406823 @default.
- W2021960928 cites W2019826771 @default.
- W2021960928 cites W2021429920 @default.
- W2021960928 cites W2028487463 @default.
- W2021960928 cites W2031427874 @default.
- W2021960928 cites W2039245308 @default.
- W2021960928 cites W2046344033 @default.
- W2021960928 cites W2051752778 @default.
- W2021960928 cites W2059357989 @default.
- W2021960928 cites W2060713857 @default.
- W2021960928 cites W2075283562 @default.
- W2021960928 cites W2078882488 @default.
- W2021960928 cites W2079269385 @default.
- W2021960928 cites W2085232250 @default.
- W2021960928 cites W2086794496 @default.
- W2021960928 cites W2093385687 @default.
- W2021960928 cites W2093953320 @default.
- W2021960928 cites W2099790177 @default.
- W2021960928 cites W2108552782 @default.
- W2021960928 cites W2121275187 @default.
- W2021960928 cites W2123811769 @default.
- W2021960928 cites W2124435169 @default.
- W2021960928 cites W2125241686 @default.
- W2021960928 cites W2142425726 @default.
- W2021960928 cites W2145992793 @default.
- W2021960928 cites W2150593711 @default.
- W2021960928 cites W2167485994 @default.
- W2021960928 cites W4233979879 @default.
- W2021960928 doi "https://doi.org/10.1137/060677884" @default.
- W2021960928 hasPublicationYear "2009" @default.
- W2021960928 type Work @default.
- W2021960928 sameAs 2021960928 @default.
- W2021960928 citedByCount "93" @default.
- W2021960928 countsByYear W20219609282012 @default.
- W2021960928 countsByYear W20219609282013 @default.
- W2021960928 countsByYear W20219609282014 @default.
- W2021960928 countsByYear W20219609282015 @default.
- W2021960928 countsByYear W20219609282016 @default.
- W2021960928 countsByYear W20219609282017 @default.
- W2021960928 countsByYear W20219609282018 @default.
- W2021960928 countsByYear W20219609282019 @default.
- W2021960928 countsByYear W20219609282020 @default.
- W2021960928 countsByYear W20219609282021 @default.
- W2021960928 countsByYear W20219609282022 @default.
- W2021960928 countsByYear W20219609282023 @default.
- W2021960928 crossrefType "journal-article" @default.
- W2021960928 hasAuthorship W2021960928A5025847033 @default.
- W2021960928 hasAuthorship W2021960928A5062696404 @default.
- W2021960928 hasConcept C105795698 @default.
- W2021960928 hasConcept C106131492 @default.
- W2021960928 hasConcept C111919701 @default.
- W2021960928 hasConcept C11413529 @default.
- W2021960928 hasConcept C126255220 @default.
- W2021960928 hasConcept C127413603 @default.
- W2021960928 hasConcept C154945302 @default.
- W2021960928 hasConcept C176217482 @default.
- W2021960928 hasConcept C177264268 @default.
- W2021960928 hasConcept C185429906 @default.
- W2021960928 hasConcept C199360897 @default.
- W2021960928 hasConcept C21547014 @default.
- W2021960928 hasConcept C24590314 @default.
- W2021960928 hasConcept C2775924081 @default.
- W2021960928 hasConcept C31258907 @default.
- W2021960928 hasConcept C31972630 @default.
- W2021960928 hasConcept C33923547 @default.
- W2021960928 hasConcept C41008148 @default.
- W2021960928 hasConcept C47446073 @default.
- W2021960928 hasConcept C98045186 @default.
- W2021960928 hasConceptScore W2021960928C105795698 @default.
- W2021960928 hasConceptScore W2021960928C106131492 @default.
- W2021960928 hasConceptScore W2021960928C111919701 @default.
- W2021960928 hasConceptScore W2021960928C11413529 @default.
- W2021960928 hasConceptScore W2021960928C126255220 @default.
- W2021960928 hasConceptScore W2021960928C127413603 @default.
- W2021960928 hasConceptScore W2021960928C154945302 @default.
- W2021960928 hasConceptScore W2021960928C176217482 @default.
- W2021960928 hasConceptScore W2021960928C177264268 @default.
- W2021960928 hasConceptScore W2021960928C185429906 @default.
- W2021960928 hasConceptScore W2021960928C199360897 @default.
- W2021960928 hasConceptScore W2021960928C21547014 @default.
- W2021960928 hasConceptScore W2021960928C24590314 @default.
- W2021960928 hasConceptScore W2021960928C2775924081 @default.
- W2021960928 hasConceptScore W2021960928C31258907 @default.
- W2021960928 hasConceptScore W2021960928C31972630 @default.