Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022021021> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2022021021 abstract "We give a short proof of the finiteness of the set of integral points on an affine algebraic curve of genus at least one, defined over a function field of characteristic zero. Siegel [Si] has shown that an affine algebraic curve of genus at least one defined over a number field has only finitely many integral points. Lang [L] has proven an analogous result for curves defined over a function field of characteristic zero not defined over the constant field. For curves of genus at least two, one even has the Mordell conjecture (proved by Faltings [F] in the number field case and by Manin [M] in the function field case) that there are only finitely many rational points. For genus one, Manin [M] gave a proof of a strenghtening of Lang's result as a by-product of his work on the Mordell conjecture. Mason [Ms] then gave an effective proof by more elementary considerations. In this note, we give a short proof of Manin's (and hence Lang's) result for genus one. The proof can be adapted to higher genus as well (see the remark below). Let K be a function field with constant field of characteristic zero and E/K an elliptic curve with nonconstant j-invariant. The reader may consult [S] for definitions and results about elliptic curves. In particular, we shall use the following results. The group E(K) is a finitely generated abelian group by the Mordell-Weil theorem, and there is a height function h: E(K) -) R with the property that there are only finitely many points of bounded height ([L], Proposition 2). The height can be written as a sum of local heights E A (P), where v ranges through the places of K. The local heights satisfy Av(P) = max{O, v(t(P))}+,fv(P), where f3v is bounded for all v and is identically zero for all but finitely many v, and t is a uniformizer at 0 E E. For example, t = x/y, where x, y are coordinates of a Weierstrass equation for E. Now, Lang's result for genus one can be reduced to the case of a Weierstrass equation ([S], Corollary IX.3.2.2) and in this case we argue as follows. Let S be a finite set of places of K. Then Ev i S Av (P) is bounded independently of P. if P is S-integral and, since there are only finitely many points of bounded Received by the editors October 5, 1992 and, in revised form, March 20, 1993. 1991 Mathematics Subject Classification. Primary 1 1G05, 1 1G30, 14G25." @default.
- W2022021021 created "2016-06-24" @default.
- W2022021021 creator A5074427817 @default.
- W2022021021 date "1994-04-01" @default.
- W2022021021 modified "2023-09-27" @default.
- W2022021021 title "Siegel’s theorem for complex function fields" @default.
- W2022021021 cites W1486898453 @default.
- W2022021021 cites W1587054906 @default.
- W2022021021 cites W1998235438 @default.
- W2022021021 cites W2004140855 @default.
- W2022021021 cites W2038383731 @default.
- W2022021021 doi "https://doi.org/10.1090/s0002-9939-1994-1209430-9" @default.
- W2022021021 hasPublicationYear "1994" @default.
- W2022021021 type Work @default.
- W2022021021 sameAs 2022021021 @default.
- W2022021021 citedByCount "4" @default.
- W2022021021 countsByYear W20220210212019 @default.
- W2022021021 countsByYear W20220210212021 @default.
- W2022021021 crossrefType "journal-article" @default.
- W2022021021 hasAuthorship W2022021021A5074427817 @default.
- W2022021021 hasBestOaLocation W20220210211 @default.
- W2022021021 hasConcept C118615104 @default.
- W2022021021 hasConcept C12657307 @default.
- W2022021021 hasConcept C136170076 @default.
- W2022021021 hasConcept C138885662 @default.
- W2022021021 hasConcept C157369684 @default.
- W2022021021 hasConcept C179603306 @default.
- W2022021021 hasConcept C202444582 @default.
- W2022021021 hasConcept C2778795570 @default.
- W2022021021 hasConcept C2780813799 @default.
- W2022021021 hasConcept C2780990831 @default.
- W2022021021 hasConcept C33923547 @default.
- W2022021021 hasConcept C41895202 @default.
- W2022021021 hasConcept C59822182 @default.
- W2022021021 hasConcept C81008192 @default.
- W2022021021 hasConcept C86803240 @default.
- W2022021021 hasConcept C93968575 @default.
- W2022021021 hasConcept C9652623 @default.
- W2022021021 hasConceptScore W2022021021C118615104 @default.
- W2022021021 hasConceptScore W2022021021C12657307 @default.
- W2022021021 hasConceptScore W2022021021C136170076 @default.
- W2022021021 hasConceptScore W2022021021C138885662 @default.
- W2022021021 hasConceptScore W2022021021C157369684 @default.
- W2022021021 hasConceptScore W2022021021C179603306 @default.
- W2022021021 hasConceptScore W2022021021C202444582 @default.
- W2022021021 hasConceptScore W2022021021C2778795570 @default.
- W2022021021 hasConceptScore W2022021021C2780813799 @default.
- W2022021021 hasConceptScore W2022021021C2780990831 @default.
- W2022021021 hasConceptScore W2022021021C33923547 @default.
- W2022021021 hasConceptScore W2022021021C41895202 @default.
- W2022021021 hasConceptScore W2022021021C59822182 @default.
- W2022021021 hasConceptScore W2022021021C81008192 @default.
- W2022021021 hasConceptScore W2022021021C86803240 @default.
- W2022021021 hasConceptScore W2022021021C93968575 @default.
- W2022021021 hasConceptScore W2022021021C9652623 @default.
- W2022021021 hasLocation W20220210211 @default.
- W2022021021 hasOpenAccess W2022021021 @default.
- W2022021021 hasPrimaryLocation W20220210211 @default.
- W2022021021 hasRelatedWork W1173683664 @default.
- W2022021021 hasRelatedWork W1499399171 @default.
- W2022021021 hasRelatedWork W1530437689 @default.
- W2022021021 hasRelatedWork W1540674163 @default.
- W2022021021 hasRelatedWork W1565495400 @default.
- W2022021021 hasRelatedWork W1583607006 @default.
- W2022021021 hasRelatedWork W1707592146 @default.
- W2022021021 hasRelatedWork W1753895821 @default.
- W2022021021 hasRelatedWork W1848639336 @default.
- W2022021021 hasRelatedWork W1974926277 @default.
- W2022021021 hasRelatedWork W1989842546 @default.
- W2022021021 hasRelatedWork W2000090633 @default.
- W2022021021 hasRelatedWork W2048188956 @default.
- W2022021021 hasRelatedWork W2103410298 @default.
- W2022021021 hasRelatedWork W2476875116 @default.
- W2022021021 hasRelatedWork W2962904443 @default.
- W2022021021 hasRelatedWork W3103013808 @default.
- W2022021021 hasRelatedWork W588295442 @default.
- W2022021021 hasRelatedWork W625593473 @default.
- W2022021021 hasRelatedWork W2093852531 @default.
- W2022021021 isParatext "false" @default.
- W2022021021 isRetracted "false" @default.
- W2022021021 magId "2022021021" @default.
- W2022021021 workType "article" @default.