Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022022158> ?p ?o ?g. }
- W2022022158 endingPage "065007" @default.
- W2022022158 startingPage "065007" @default.
- W2022022158 abstract "We establish posterior sparsity in Bayesian inversion for systems governed by operator equations with distributed parameter uncertainty subject to noisy observation data δ. We generalize the results and algorithms introduced in C Schillings and C Schwab (2013 Inverse Problems 29 065011) for the particular case of scalar diffusion problems with random coefficients to broad classes of forward problems, including general elliptic and parabolic operators with uncertain coefficients, and in random domains. For countably parametric, deterministic representations of uncertain parameters in the forward problem, which belong to a specified sparsity class, we quantify analytic regularity of the likewise countably parametric, deterministic Bayesian posterior density with respect to a uniform prior on the uncertain parameter sequences and prove that the parametric, deterministic density of the Bayesian posterior belongs to the same sparsity class. Generalizing C Schillings and C Schwab (2013 Inverse Problems 29 065011) and C Schwab and A M Stuart (2012 Inverse Problems 28 045003) the forward problems are converted to countably parametric, deterministic operator equations. Computational Bayesian inversion amounts to numerically evaluating expectations of quantities of interest (QoIs) under the Bayesian posterior, conditional on noisy observation data. Our results imply, on the one hand, sparsity of Legendre (generalized) polynomial chaos expansions of the density of the Bayesian posterior with respect to uniform prior and, on the other hand, convergence rates for data-adaptive Smolyak integration algorithms for computational Bayesian estimation, which are independent of the dimension of the parameter space. We prove, mathematically and computationally, that for uncertain inputs with sufficient sparsity convergence rates are, in particular, superior to Markov chain Monte-Carlo sampling of the posterior, in terms of the number N of instances of the parametric forward problem to be solved." @default.
- W2022022158 created "2016-06-24" @default.
- W2022022158 creator A5035622223 @default.
- W2022022158 creator A5039330337 @default.
- W2022022158 date "2014-05-30" @default.
- W2022022158 modified "2023-09-24" @default.
- W2022022158 title "Sparsity in Bayesian inversion of parametric operator equations" @default.
- W2022022158 cites W1531455566 @default.
- W2022022158 cites W1970476229 @default.
- W2022022158 cites W1982944750 @default.
- W2022022158 cites W1997719109 @default.
- W2022022158 cites W2000408025 @default.
- W2022022158 cites W2015558767 @default.
- W2022022158 cites W2017880874 @default.
- W2022022158 cites W2036766781 @default.
- W2022022158 cites W2041865295 @default.
- W2022022158 cites W2047133076 @default.
- W2022022158 cites W2049222546 @default.
- W2022022158 cites W2054917359 @default.
- W2022022158 cites W2062993069 @default.
- W2022022158 cites W2070980742 @default.
- W2022022158 cites W2074686342 @default.
- W2022022158 cites W2082261407 @default.
- W2022022158 cites W2092333401 @default.
- W2022022158 cites W2094952117 @default.
- W2022022158 cites W2105425058 @default.
- W2022022158 cites W2110065034 @default.
- W2022022158 cites W2117188967 @default.
- W2022022158 cites W2149498546 @default.
- W2022022158 cites W2152981240 @default.
- W2022022158 cites W2690561861 @default.
- W2022022158 cites W2964198215 @default.
- W2022022158 cites W3021293439 @default.
- W2022022158 cites W3101802995 @default.
- W2022022158 cites W4292403327 @default.
- W2022022158 doi "https://doi.org/10.1088/0266-5611/30/6/065007" @default.
- W2022022158 hasPublicationYear "2014" @default.
- W2022022158 type Work @default.
- W2022022158 sameAs 2022022158 @default.
- W2022022158 citedByCount "47" @default.
- W2022022158 countsByYear W20220221582014 @default.
- W2022022158 countsByYear W20220221582015 @default.
- W2022022158 countsByYear W20220221582016 @default.
- W2022022158 countsByYear W20220221582017 @default.
- W2022022158 countsByYear W20220221582018 @default.
- W2022022158 countsByYear W20220221582019 @default.
- W2022022158 countsByYear W20220221582020 @default.
- W2022022158 countsByYear W20220221582021 @default.
- W2022022158 countsByYear W20220221582022 @default.
- W2022022158 countsByYear W20220221582023 @default.
- W2022022158 crossrefType "journal-article" @default.
- W2022022158 hasAuthorship W2022022158A5035622223 @default.
- W2022022158 hasAuthorship W2022022158A5039330337 @default.
- W2022022158 hasBestOaLocation W20220221582 @default.
- W2022022158 hasConcept C104317684 @default.
- W2022022158 hasConcept C105795698 @default.
- W2022022158 hasConcept C107673813 @default.
- W2022022158 hasConcept C11413529 @default.
- W2022022158 hasConcept C117251300 @default.
- W2022022158 hasConcept C126255220 @default.
- W2022022158 hasConcept C134306372 @default.
- W2022022158 hasConcept C135252773 @default.
- W2022022158 hasConcept C158448853 @default.
- W2022022158 hasConcept C17020691 @default.
- W2022022158 hasConcept C185592680 @default.
- W2022022158 hasConcept C19499675 @default.
- W2022022158 hasConcept C197656079 @default.
- W2022022158 hasConcept C28826006 @default.
- W2022022158 hasConcept C32230216 @default.
- W2022022158 hasConcept C33923547 @default.
- W2022022158 hasConcept C55493867 @default.
- W2022022158 hasConcept C57830394 @default.
- W2022022158 hasConcept C86339819 @default.
- W2022022158 hasConceptScore W2022022158C104317684 @default.
- W2022022158 hasConceptScore W2022022158C105795698 @default.
- W2022022158 hasConceptScore W2022022158C107673813 @default.
- W2022022158 hasConceptScore W2022022158C11413529 @default.
- W2022022158 hasConceptScore W2022022158C117251300 @default.
- W2022022158 hasConceptScore W2022022158C126255220 @default.
- W2022022158 hasConceptScore W2022022158C134306372 @default.
- W2022022158 hasConceptScore W2022022158C135252773 @default.
- W2022022158 hasConceptScore W2022022158C158448853 @default.
- W2022022158 hasConceptScore W2022022158C17020691 @default.
- W2022022158 hasConceptScore W2022022158C185592680 @default.
- W2022022158 hasConceptScore W2022022158C19499675 @default.
- W2022022158 hasConceptScore W2022022158C197656079 @default.
- W2022022158 hasConceptScore W2022022158C28826006 @default.
- W2022022158 hasConceptScore W2022022158C32230216 @default.
- W2022022158 hasConceptScore W2022022158C33923547 @default.
- W2022022158 hasConceptScore W2022022158C55493867 @default.
- W2022022158 hasConceptScore W2022022158C57830394 @default.
- W2022022158 hasConceptScore W2022022158C86339819 @default.
- W2022022158 hasIssue "6" @default.
- W2022022158 hasLocation W20220221581 @default.
- W2022022158 hasLocation W20220221582 @default.
- W2022022158 hasOpenAccess W2022022158 @default.
- W2022022158 hasPrimaryLocation W20220221581 @default.
- W2022022158 hasRelatedWork W2257115329 @default.