Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022024303> ?p ?o ?g. }
- W2022024303 endingPage "657" @default.
- W2022024303 startingPage "648" @default.
- W2022024303 abstract "In this paper we describe and test a pipeline for the extraction and semantic labelling of geometrically salient points on acquired human body models. Points of interest are extracted on the preprocessed scanned geometries as maxima of the autodiffusion function at different scales and annotated by an expert, where possible, with a corresponding semantic label related to a specific anatomical location. On the extracted points we computed several descriptors (e.g. Heat Kernel Signature, Wave Kernel Signature, Derivatives of Heat Kernel Signature) and used labels and descriptors to train supervised classifiers, in order to understand if it is possible to recognize the points on new models. Experimental results show that this approach can be used to detect and recognize robustly at least a selection of landmarks on subjects with different body types and independently on pose and could therefore applied for automatic anthropometric analysis." @default.
- W2022024303 created "2016-06-24" @default.
- W2022024303 creator A5006434756 @default.
- W2022024303 creator A5047670729 @default.
- W2022024303 creator A5056042099 @default.
- W2022024303 creator A5070645298 @default.
- W2022024303 date "2014-11-01" @default.
- W2022024303 modified "2023-09-27" @default.
- W2022024303 title "Automatic labelling of anatomical landmarks on 3D body scans" @default.
- W2022024303 cites W1569530544 @default.
- W2022024303 cites W1587235128 @default.
- W2022024303 cites W1987121049 @default.
- W2022024303 cites W1989191365 @default.
- W2022024303 cites W1994359450 @default.
- W2022024303 cites W2003014378 @default.
- W2022024303 cites W2013442102 @default.
- W2022024303 cites W2027424287 @default.
- W2022024303 cites W2030470431 @default.
- W2022024303 cites W2039428420 @default.
- W2022024303 cites W2051763443 @default.
- W2022024303 cites W2072112022 @default.
- W2022024303 cites W2091791686 @default.
- W2022024303 cites W2097797924 @default.
- W2022024303 cites W2100657858 @default.
- W2022024303 cites W2100792560 @default.
- W2022024303 cites W2108337347 @default.
- W2022024303 cites W2121581473 @default.
- W2022024303 cites W2127025496 @default.
- W2022024303 cites W2127486527 @default.
- W2022024303 cites W2157656721 @default.
- W2022024303 cites W2159031003 @default.
- W2022024303 cites W2160899492 @default.
- W2022024303 cites W2187479452 @default.
- W2022024303 cites W268639037 @default.
- W2022024303 cites W1993846356 @default.
- W2022024303 doi "https://doi.org/10.1016/j.gmod.2014.07.001" @default.
- W2022024303 hasPublicationYear "2014" @default.
- W2022024303 type Work @default.
- W2022024303 sameAs 2022024303 @default.
- W2022024303 citedByCount "9" @default.
- W2022024303 countsByYear W20220243032014 @default.
- W2022024303 countsByYear W20220243032016 @default.
- W2022024303 countsByYear W20220243032018 @default.
- W2022024303 countsByYear W20220243032019 @default.
- W2022024303 countsByYear W20220243032022 @default.
- W2022024303 crossrefType "journal-article" @default.
- W2022024303 hasAuthorship W2022024303A5006434756 @default.
- W2022024303 hasAuthorship W2022024303A5047670729 @default.
- W2022024303 hasAuthorship W2022024303A5056042099 @default.
- W2022024303 hasAuthorship W2022024303A5070645298 @default.
- W2022024303 hasConcept C114614502 @default.
- W2022024303 hasConcept C129641003 @default.
- W2022024303 hasConcept C153180895 @default.
- W2022024303 hasConcept C154945302 @default.
- W2022024303 hasConcept C199360897 @default.
- W2022024303 hasConcept C2524010 @default.
- W2022024303 hasConcept C2779696439 @default.
- W2022024303 hasConcept C2780719617 @default.
- W2022024303 hasConcept C31972630 @default.
- W2022024303 hasConcept C33923547 @default.
- W2022024303 hasConcept C41008148 @default.
- W2022024303 hasConcept C43521106 @default.
- W2022024303 hasConcept C45089102 @default.
- W2022024303 hasConcept C74193536 @default.
- W2022024303 hasConcept C89600930 @default.
- W2022024303 hasConceptScore W2022024303C114614502 @default.
- W2022024303 hasConceptScore W2022024303C129641003 @default.
- W2022024303 hasConceptScore W2022024303C153180895 @default.
- W2022024303 hasConceptScore W2022024303C154945302 @default.
- W2022024303 hasConceptScore W2022024303C199360897 @default.
- W2022024303 hasConceptScore W2022024303C2524010 @default.
- W2022024303 hasConceptScore W2022024303C2779696439 @default.
- W2022024303 hasConceptScore W2022024303C2780719617 @default.
- W2022024303 hasConceptScore W2022024303C31972630 @default.
- W2022024303 hasConceptScore W2022024303C33923547 @default.
- W2022024303 hasConceptScore W2022024303C41008148 @default.
- W2022024303 hasConceptScore W2022024303C43521106 @default.
- W2022024303 hasConceptScore W2022024303C45089102 @default.
- W2022024303 hasConceptScore W2022024303C74193536 @default.
- W2022024303 hasConceptScore W2022024303C89600930 @default.
- W2022024303 hasIssue "6" @default.
- W2022024303 hasLocation W20220243031 @default.
- W2022024303 hasOpenAccess W2022024303 @default.
- W2022024303 hasPrimaryLocation W20220243031 @default.
- W2022024303 hasRelatedWork W1669643531 @default.
- W2022024303 hasRelatedWork W2005437358 @default.
- W2022024303 hasRelatedWork W2008656436 @default.
- W2022024303 hasRelatedWork W2039154422 @default.
- W2022024303 hasRelatedWork W2079531124 @default.
- W2022024303 hasRelatedWork W2134924024 @default.
- W2022024303 hasRelatedWork W2141018987 @default.
- W2022024303 hasRelatedWork W2517104666 @default.
- W2022024303 hasRelatedWork W2607572884 @default.
- W2022024303 hasRelatedWork W2182382398 @default.
- W2022024303 hasVolume "76" @default.
- W2022024303 isParatext "false" @default.
- W2022024303 isRetracted "false" @default.
- W2022024303 magId "2022024303" @default.