Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022027143> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2022027143 endingPage "12499" @default.
- W2022027143 startingPage "12491" @default.
- W2022027143 abstract "Prediction of liquefaction is an important subject in geotechnical engineering. Prediction of liquefaction is also a complex problem as it depends on many different physical factors, and the relations between these factors are highly non-linear and complex. Several approaches have been proposed in the literature for modeling and prediction of liquefaction. Most of these approaches are based on classical statistical approaches and neural networks. In this paper a new approach which is based on classification data mining is proposed first time in the literature for liquefaction prediction. The proposed approach is based on extracting accurate classification rules from neural networks via ant colony optimization. The extracted classification rules are in the form of IF–THEN rules which can be easily understood by human. The proposed algorithm is also compared with several other data mining algorithms. It is shown that the proposed algorithm is very effective and accurate in prediction of liquefaction." @default.
- W2022027143 created "2016-06-24" @default.
- W2022027143 creator A5020250044 @default.
- W2022027143 creator A5024338611 @default.
- W2022027143 creator A5025000229 @default.
- W2022027143 creator A5038260798 @default.
- W2022027143 date "2009-12-01" @default.
- W2022027143 modified "2023-10-16" @default.
- W2022027143 title "Generating prediction rules for liquefaction through data mining" @default.
- W2022027143 cites W1490718145 @default.
- W2022027143 cites W1965945445 @default.
- W2022027143 cites W1971731961 @default.
- W2022027143 cites W1976405057 @default.
- W2022027143 cites W1992999716 @default.
- W2022027143 cites W2015205076 @default.
- W2022027143 cites W2016710414 @default.
- W2022027143 cites W2017159066 @default.
- W2022027143 cites W2026413420 @default.
- W2022027143 cites W2026546610 @default.
- W2022027143 cites W2032170200 @default.
- W2022027143 cites W2036044151 @default.
- W2022027143 cites W2041893233 @default.
- W2022027143 cites W2043766959 @default.
- W2022027143 cites W2060391650 @default.
- W2022027143 cites W2063046703 @default.
- W2022027143 cites W2063689928 @default.
- W2022027143 cites W2066380554 @default.
- W2022027143 cites W2074107848 @default.
- W2022027143 cites W2082362569 @default.
- W2022027143 cites W2101066084 @default.
- W2022027143 cites W2107344159 @default.
- W2022027143 cites W2114938644 @default.
- W2022027143 cites W2116643976 @default.
- W2022027143 cites W2137213081 @default.
- W2022027143 cites W2329967641 @default.
- W2022027143 doi "https://doi.org/10.1016/j.eswa.2009.04.033" @default.
- W2022027143 hasPublicationYear "2009" @default.
- W2022027143 type Work @default.
- W2022027143 sameAs 2022027143 @default.
- W2022027143 citedByCount "15" @default.
- W2022027143 countsByYear W20220271432012 @default.
- W2022027143 countsByYear W20220271432013 @default.
- W2022027143 countsByYear W20220271432016 @default.
- W2022027143 countsByYear W20220271432017 @default.
- W2022027143 countsByYear W20220271432018 @default.
- W2022027143 countsByYear W20220271432019 @default.
- W2022027143 countsByYear W20220271432021 @default.
- W2022027143 crossrefType "journal-article" @default.
- W2022027143 hasAuthorship W2022027143A5020250044 @default.
- W2022027143 hasAuthorship W2022027143A5024338611 @default.
- W2022027143 hasAuthorship W2022027143A5025000229 @default.
- W2022027143 hasAuthorship W2022027143A5038260798 @default.
- W2022027143 hasConcept C119857082 @default.
- W2022027143 hasConcept C124101348 @default.
- W2022027143 hasConcept C127413603 @default.
- W2022027143 hasConcept C154945302 @default.
- W2022027143 hasConcept C187320778 @default.
- W2022027143 hasConcept C191859794 @default.
- W2022027143 hasConcept C40128228 @default.
- W2022027143 hasConcept C41008148 @default.
- W2022027143 hasConcept C50644808 @default.
- W2022027143 hasConceptScore W2022027143C119857082 @default.
- W2022027143 hasConceptScore W2022027143C124101348 @default.
- W2022027143 hasConceptScore W2022027143C127413603 @default.
- W2022027143 hasConceptScore W2022027143C154945302 @default.
- W2022027143 hasConceptScore W2022027143C187320778 @default.
- W2022027143 hasConceptScore W2022027143C191859794 @default.
- W2022027143 hasConceptScore W2022027143C40128228 @default.
- W2022027143 hasConceptScore W2022027143C41008148 @default.
- W2022027143 hasConceptScore W2022027143C50644808 @default.
- W2022027143 hasIssue "10" @default.
- W2022027143 hasLocation W20220271431 @default.
- W2022027143 hasOpenAccess W2022027143 @default.
- W2022027143 hasPrimaryLocation W20220271431 @default.
- W2022027143 hasRelatedWork W2371103813 @default.
- W2022027143 hasRelatedWork W2375021355 @default.
- W2022027143 hasRelatedWork W2377359913 @default.
- W2022027143 hasRelatedWork W2961085424 @default.
- W2022027143 hasRelatedWork W4285260836 @default.
- W2022027143 hasRelatedWork W4286629047 @default.
- W2022027143 hasRelatedWork W4306321456 @default.
- W2022027143 hasRelatedWork W4306674287 @default.
- W2022027143 hasRelatedWork W1629725936 @default.
- W2022027143 hasRelatedWork W4224009465 @default.
- W2022027143 hasVolume "36" @default.
- W2022027143 isParatext "false" @default.
- W2022027143 isRetracted "false" @default.
- W2022027143 magId "2022027143" @default.
- W2022027143 workType "article" @default.