Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022034078> ?p ?o ?g. }
- W2022034078 endingPage "187" @default.
- W2022034078 startingPage "176" @default.
- W2022034078 abstract "The extent to which the lithological heterogeneity of the mantle source controls mid-oceanic ridge basalt (MORB) compositions remains largely debated. The recycling of oceanic crust into the mantle is widely considered to be an important cause of mantle source heterogeneity. We provide data for major and trace elements and Sr-Nd-Pb isotopes of thirteen mid-ocean ridge basalt (MORB) samples from the East Pacific Rise (EPR) to investigate the mantle source heterogeneity introduced by recycled oceanic crust (ROC). Relationships of Sr-Nd-Pb isotopes and incompatible trace element ratios, such as Sm/Yb and Hf/Zr, and ratios Zn/Fe, Co/Fe and (Pb/Pb*)(N) indicate a geochemically and lithologically heterogeneous mantle source. Mixing between components from depleted mantle (DMM) and enriched ROC-derived pyroxenite is required to explain these relationships. The relatively high Sm/Yb and the good correlation of Sr-87/Sr-86 vs. Sr/Nd are in concert with variable contributions from a pyroxenite component derived from recycled plagioclase-fractionated E-MORB. The narrow range of MgO contents (7.49 wt.% to 8.58 wt.%) and the correlations of major contents with Sr-87/Sr-86 and Zn/Fe ratios indicate the control of a mixed pyroxenite-peridotite source on the major element compositions of these lavas. To further investigate the major element contribution from the lithologically heterogeneous mantle source (peridotite/pyroxenite), major element compositions were corrected for fractional crystallization both to a given MgO wt.% and a given liquidus temperature. After correction for fractional crystallization, the Fear and Na2O increase and CaO decreases with increasing melt proportion from the enriched end-member. Based on the observations of this study and the results from partial melting experiments on pyroxenite and peridotite, a melting model, in which magma forms by mixing a deep and enriched melt (pyroxenite melt) with a shallow and depleted DMM melt (peridotite melt), provides a likely mechanism that can produce the major element systematics. (C) 2012 Elsevier B.V. All rights reserved." @default.
- W2022034078 created "2016-06-24" @default.
- W2022034078 creator A5000359400 @default.
- W2022034078 creator A5019090948 @default.
- W2022034078 creator A5032656306 @default.
- W2022034078 creator A5062125045 @default.
- W2022034078 date "2012-11-01" @default.
- W2022034078 modified "2023-10-16" @default.
- W2022034078 title "Geochemical constraints on a mixed pyroxenite–peridotite source for East Pacific Rise basalts" @default.
- W2022034078 cites W1507573241 @default.
- W2022034078 cites W1540907122 @default.
- W2022034078 cites W1656874552 @default.
- W2022034078 cites W1786672761 @default.
- W2022034078 cites W1879999282 @default.
- W2022034078 cites W1966133457 @default.
- W2022034078 cites W1970953852 @default.
- W2022034078 cites W1973591418 @default.
- W2022034078 cites W1974731988 @default.
- W2022034078 cites W1974882281 @default.
- W2022034078 cites W1977954514 @default.
- W2022034078 cites W1982443945 @default.
- W2022034078 cites W1983316554 @default.
- W2022034078 cites W1983397141 @default.
- W2022034078 cites W1985531665 @default.
- W2022034078 cites W1989985088 @default.
- W2022034078 cites W1990740187 @default.
- W2022034078 cites W1990814837 @default.
- W2022034078 cites W1993409945 @default.
- W2022034078 cites W1993648774 @default.
- W2022034078 cites W1998707404 @default.
- W2022034078 cites W2003446684 @default.
- W2022034078 cites W2003641336 @default.
- W2022034078 cites W2003948785 @default.
- W2022034078 cites W2005096309 @default.
- W2022034078 cites W2006479049 @default.
- W2022034078 cites W2007433465 @default.
- W2022034078 cites W2007875431 @default.
- W2022034078 cites W2012023697 @default.
- W2022034078 cites W2015500192 @default.
- W2022034078 cites W2015767858 @default.
- W2022034078 cites W2017941972 @default.
- W2022034078 cites W2019453281 @default.
- W2022034078 cites W2019823859 @default.
- W2022034078 cites W2027293310 @default.
- W2022034078 cites W2028100646 @default.
- W2022034078 cites W2028377358 @default.
- W2022034078 cites W2028824915 @default.
- W2022034078 cites W2029330897 @default.
- W2022034078 cites W2030870291 @default.
- W2022034078 cites W2034388111 @default.
- W2022034078 cites W2038979071 @default.
- W2022034078 cites W2041911594 @default.
- W2022034078 cites W2042423268 @default.
- W2022034078 cites W2046331622 @default.
- W2022034078 cites W2050480893 @default.
- W2022034078 cites W2055859870 @default.
- W2022034078 cites W2059197455 @default.
- W2022034078 cites W2067183899 @default.
- W2022034078 cites W2075845557 @default.
- W2022034078 cites W2082384972 @default.
- W2022034078 cites W2083828239 @default.
- W2022034078 cites W2086540936 @default.
- W2022034078 cites W2092743826 @default.
- W2022034078 cites W2099456540 @default.
- W2022034078 cites W2105469422 @default.
- W2022034078 cites W2114487014 @default.
- W2022034078 cites W2125184934 @default.
- W2022034078 cites W2125654971 @default.
- W2022034078 cites W2133025685 @default.
- W2022034078 cites W2133591813 @default.
- W2022034078 cites W2136039128 @default.
- W2022034078 cites W2139737137 @default.
- W2022034078 cites W2144936795 @default.
- W2022034078 cites W2148501813 @default.
- W2022034078 cites W2151041036 @default.
- W2022034078 cites W2151203383 @default.
- W2022034078 cites W2155902879 @default.
- W2022034078 cites W2167766953 @default.
- W2022034078 cites W2324661783 @default.
- W2022034078 cites W2326714219 @default.
- W2022034078 cites W2794956287 @default.
- W2022034078 cites W4214911971 @default.
- W2022034078 cites W4245638129 @default.
- W2022034078 doi "https://doi.org/10.1016/j.chemgeo.2012.08.033" @default.
- W2022034078 hasPublicationYear "2012" @default.
- W2022034078 type Work @default.
- W2022034078 sameAs 2022034078 @default.
- W2022034078 citedByCount "29" @default.
- W2022034078 countsByYear W20220340782014 @default.
- W2022034078 countsByYear W20220340782015 @default.
- W2022034078 countsByYear W20220340782016 @default.
- W2022034078 countsByYear W20220340782017 @default.
- W2022034078 countsByYear W20220340782018 @default.
- W2022034078 countsByYear W20220340782019 @default.
- W2022034078 countsByYear W20220340782020 @default.
- W2022034078 countsByYear W20220340782021 @default.
- W2022034078 countsByYear W20220340782022 @default.
- W2022034078 countsByYear W20220340782023 @default.