Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022035160> ?p ?o ?g. }
- W2022035160 endingPage "273" @default.
- W2022035160 startingPage "267" @default.
- W2022035160 abstract "Hyperspectral imaging images were used to predict fresh beef tenderness (WBSF: Warner–Bratzler Shear Force) and color parameters (L∗, a∗, b∗). Sixty-five fresh strip loin cuts were collected from 33 carcass after 2 days postmortem. After acquiring hyperspectral images, the samples were vacuum packaged and aged for 7 days, and then the color parameters and WBSF of the samples were measured as references. The optical scattering profiles were extracted from the images and fitted to the Lorentzian distribution (LD) function with three parameters. LD parameters, such as the scattering asymptotic vale, the peak height, and full scattering width were determined at each wavelength. Stepwise discrimination was used to identify optimal wavelengths. The LD parameters’ combinations with optimal wavelengths were used to establish multi-linear regression (MLR) models to predict the beef attributes. The models were able to predict beef WBSF with Rcv = 0.91, and color parameters (L∗, a∗, b∗) with Rcv of 0.96, 0.96 and 0.97, respectively." @default.
- W2022035160 created "2016-06-24" @default.
- W2022035160 creator A5001985550 @default.
- W2022035160 creator A5034535783 @default.
- W2022035160 creator A5045130424 @default.
- W2022035160 creator A5048443949 @default.
- W2022035160 creator A5077686672 @default.
- W2022035160 creator A5078845990 @default.
- W2022035160 date "2012-03-01" @default.
- W2022035160 modified "2023-09-28" @default.
- W2022035160 title "Prediction of beef quality attributes using VIS/NIR hyperspectral scattering imaging technique" @default.
- W2022035160 cites W1539341996 @default.
- W2022035160 cites W1970078894 @default.
- W2022035160 cites W2007104720 @default.
- W2022035160 cites W2009772645 @default.
- W2022035160 cites W2014274999 @default.
- W2022035160 cites W2020077915 @default.
- W2022035160 cites W2023694558 @default.
- W2022035160 cites W2035723004 @default.
- W2022035160 cites W2038000903 @default.
- W2022035160 cites W2047653577 @default.
- W2022035160 cites W2048976066 @default.
- W2022035160 cites W2055036777 @default.
- W2022035160 cites W2055352931 @default.
- W2022035160 cites W2055702453 @default.
- W2022035160 cites W2066753452 @default.
- W2022035160 cites W2080581136 @default.
- W2022035160 cites W2090965541 @default.
- W2022035160 cites W2093026864 @default.
- W2022035160 cites W2116146609 @default.
- W2022035160 cites W2154012962 @default.
- W2022035160 cites W2316493295 @default.
- W2022035160 cites W2395361926 @default.
- W2022035160 cites W290618056 @default.
- W2022035160 doi "https://doi.org/10.1016/j.jfoodeng.2011.10.004" @default.
- W2022035160 hasPublicationYear "2012" @default.
- W2022035160 type Work @default.
- W2022035160 sameAs 2022035160 @default.
- W2022035160 citedByCount "79" @default.
- W2022035160 countsByYear W20220351602012 @default.
- W2022035160 countsByYear W20220351602013 @default.
- W2022035160 countsByYear W20220351602014 @default.
- W2022035160 countsByYear W20220351602015 @default.
- W2022035160 countsByYear W20220351602016 @default.
- W2022035160 countsByYear W20220351602017 @default.
- W2022035160 countsByYear W20220351602018 @default.
- W2022035160 countsByYear W20220351602019 @default.
- W2022035160 countsByYear W20220351602020 @default.
- W2022035160 countsByYear W20220351602021 @default.
- W2022035160 countsByYear W20220351602022 @default.
- W2022035160 countsByYear W20220351602023 @default.
- W2022035160 crossrefType "journal-article" @default.
- W2022035160 hasAuthorship W2022035160A5001985550 @default.
- W2022035160 hasAuthorship W2022035160A5034535783 @default.
- W2022035160 hasAuthorship W2022035160A5045130424 @default.
- W2022035160 hasAuthorship W2022035160A5048443949 @default.
- W2022035160 hasAuthorship W2022035160A5077686672 @default.
- W2022035160 hasAuthorship W2022035160A5078845990 @default.
- W2022035160 hasConcept C120665830 @default.
- W2022035160 hasConcept C121332964 @default.
- W2022035160 hasConcept C154945302 @default.
- W2022035160 hasConcept C159078339 @default.
- W2022035160 hasConcept C185592680 @default.
- W2022035160 hasConcept C191486275 @default.
- W2022035160 hasConcept C2777449483 @default.
- W2022035160 hasConcept C2780003869 @default.
- W2022035160 hasConcept C31903555 @default.
- W2022035160 hasConcept C33923547 @default.
- W2022035160 hasConcept C41008148 @default.
- W2022035160 hasConcept C6260449 @default.
- W2022035160 hasConceptScore W2022035160C120665830 @default.
- W2022035160 hasConceptScore W2022035160C121332964 @default.
- W2022035160 hasConceptScore W2022035160C154945302 @default.
- W2022035160 hasConceptScore W2022035160C159078339 @default.
- W2022035160 hasConceptScore W2022035160C185592680 @default.
- W2022035160 hasConceptScore W2022035160C191486275 @default.
- W2022035160 hasConceptScore W2022035160C2777449483 @default.
- W2022035160 hasConceptScore W2022035160C2780003869 @default.
- W2022035160 hasConceptScore W2022035160C31903555 @default.
- W2022035160 hasConceptScore W2022035160C33923547 @default.
- W2022035160 hasConceptScore W2022035160C41008148 @default.
- W2022035160 hasConceptScore W2022035160C6260449 @default.
- W2022035160 hasIssue "2" @default.
- W2022035160 hasLocation W20220351601 @default.
- W2022035160 hasOpenAccess W2022035160 @default.
- W2022035160 hasPrimaryLocation W20220351601 @default.
- W2022035160 hasRelatedWork W1995932119 @default.
- W2022035160 hasRelatedWork W2012974759 @default.
- W2022035160 hasRelatedWork W2014274999 @default.
- W2022035160 hasRelatedWork W2054051159 @default.
- W2022035160 hasRelatedWork W2068617249 @default.
- W2022035160 hasRelatedWork W2185566734 @default.
- W2022035160 hasRelatedWork W2194904272 @default.
- W2022035160 hasRelatedWork W2965956392 @default.
- W2022035160 hasRelatedWork W3093311769 @default.
- W2022035160 hasRelatedWork W2340537516 @default.
- W2022035160 hasVolume "109" @default.
- W2022035160 isParatext "false" @default.