Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022041106> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2022041106 endingPage "2021" @default.
- W2022041106 startingPage "2013" @default.
- W2022041106 abstract "With the increasing demand of high video quality and large image size, adaptive interpolation filter (AIF) addresses these issues and conquers the time varying effects resulting in increased coding efficiency, comparing with recent H.264 standard. However, currently most AIF algorithms are based on either frame level or macroblock (MB) level, which are not flexible enough for different video contents in a real codec system, and most of them are facing a severe time consuming problem. This paper proposes a content based coarse to fine AIF algorithm, which can adapt to video contents by adding different filters and conditions from coarse to fine. The overall algorithm has been mainly made up by 3 schemes: frequency analysis based frame level skip interpolation, motion vector modeling based region level interpolation, and edge detection based macroblock level interpolation. According to the experiments, AIF are discovered to be more effective in the high frequency frames, therefore, the condition to skip low frequency frames for generating AIF coefficients has been set. Moreover, by utilizing the motion vector information of previous frames the region level based interpolation has been designed, and Laplacian of Gaussian based macroblock level interpolation has been proposed to drive the interpolation process from coarse to fine. Six 720p and six 1080p video sequences which cover most typical video types have been tested for evaluating the proposed algorithm. The experimental results show that the proposed algorithm reduce total encoding time about 41% for 720p and 25% for 1080p sequences averagely, comparing with Key Technology Areas (KTA) Enhanced AIF algorithm, while obtains a BDPSNR gain up to 0.004 and 3.122 BDBR reduction." @default.
- W2022041106 created "2016-06-24" @default.
- W2022041106 creator A5000212361 @default.
- W2022041106 creator A5021135331 @default.
- W2022041106 creator A5045637290 @default.
- W2022041106 creator A5058825605 @default.
- W2022041106 creator A5079405967 @default.
- W2022041106 date "2011-01-01" @default.
- W2022041106 modified "2023-09-26" @default.
- W2022041106 title "Content Based Coarse to Fine Adaptive Interpolation Filter for High Resolution Video Coding" @default.
- W2022041106 cites W2047215160 @default.
- W2022041106 cites W2057464253 @default.
- W2022041106 cites W2117828359 @default.
- W2022041106 cites W2121840029 @default.
- W2022041106 cites W2123807397 @default.
- W2022041106 cites W2140199336 @default.
- W2022041106 cites W3103508709 @default.
- W2022041106 doi "https://doi.org/10.1587/transfun.e94.a.2013" @default.
- W2022041106 hasPublicationYear "2011" @default.
- W2022041106 type Work @default.
- W2022041106 sameAs 2022041106 @default.
- W2022041106 citedByCount "0" @default.
- W2022041106 crossrefType "journal-article" @default.
- W2022041106 hasAuthorship W2022041106A5000212361 @default.
- W2022041106 hasAuthorship W2022041106A5021135331 @default.
- W2022041106 hasAuthorship W2022041106A5045637290 @default.
- W2022041106 hasAuthorship W2022041106A5058825605 @default.
- W2022041106 hasAuthorship W2022041106A5079405967 @default.
- W2022041106 hasConcept C104114177 @default.
- W2022041106 hasConcept C11413529 @default.
- W2022041106 hasConcept C124828224 @default.
- W2022041106 hasConcept C128840427 @default.
- W2022041106 hasConcept C137800194 @default.
- W2022041106 hasConcept C154945302 @default.
- W2022041106 hasConcept C167510206 @default.
- W2022041106 hasConcept C202474056 @default.
- W2022041106 hasConcept C205203396 @default.
- W2022041106 hasConcept C31972630 @default.
- W2022041106 hasConcept C41008148 @default.
- W2022041106 hasConcept C57273362 @default.
- W2022041106 hasConcept C65483669 @default.
- W2022041106 hasConcept C72560505 @default.
- W2022041106 hasConceptScore W2022041106C104114177 @default.
- W2022041106 hasConceptScore W2022041106C11413529 @default.
- W2022041106 hasConceptScore W2022041106C124828224 @default.
- W2022041106 hasConceptScore W2022041106C128840427 @default.
- W2022041106 hasConceptScore W2022041106C137800194 @default.
- W2022041106 hasConceptScore W2022041106C154945302 @default.
- W2022041106 hasConceptScore W2022041106C167510206 @default.
- W2022041106 hasConceptScore W2022041106C202474056 @default.
- W2022041106 hasConceptScore W2022041106C205203396 @default.
- W2022041106 hasConceptScore W2022041106C31972630 @default.
- W2022041106 hasConceptScore W2022041106C41008148 @default.
- W2022041106 hasConceptScore W2022041106C57273362 @default.
- W2022041106 hasConceptScore W2022041106C65483669 @default.
- W2022041106 hasConceptScore W2022041106C72560505 @default.
- W2022041106 hasIssue "10" @default.
- W2022041106 hasLocation W20220411061 @default.
- W2022041106 hasOpenAccess W2022041106 @default.
- W2022041106 hasPrimaryLocation W20220411061 @default.
- W2022041106 hasRelatedWork W2009035702 @default.
- W2022041106 hasRelatedWork W2038316300 @default.
- W2022041106 hasRelatedWork W2039023179 @default.
- W2022041106 hasRelatedWork W2098025439 @default.
- W2022041106 hasRelatedWork W2107100354 @default.
- W2022041106 hasRelatedWork W2311002319 @default.
- W2022041106 hasRelatedWork W2374674313 @default.
- W2022041106 hasRelatedWork W2602065345 @default.
- W2022041106 hasRelatedWork W3080585449 @default.
- W2022041106 hasRelatedWork W851866491 @default.
- W2022041106 hasVolume "E94-A" @default.
- W2022041106 isParatext "false" @default.
- W2022041106 isRetracted "false" @default.
- W2022041106 magId "2022041106" @default.
- W2022041106 workType "article" @default.