Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022060214> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2022060214 endingPage "73" @default.
- W2022060214 startingPage "61" @default.
- W2022060214 abstract "The theory of reduced density matrices for polyelectronic systems is formulated in a manner such that the reduced density matrix of any order $p$ is characterized by a coefficient matrix. This matrix of coefficients, resulting from expressing the polyelectronic wave function in the appropriate bilinear form, is sufficient to allow one to find the eigenvalues and the transformation to natural form. This formalism is a generalization of the work of Lowdin and Shull on the natural orbitals of two-electron systems. The second-order reduced density matrix, the 2-matrix, is obtained exactly from the approximate solutions $ensuremath{Psi}$ of the Schrodinger equation for the Be-atom functions of Weiss, Watson, and Boys, and the LiH function of Ebbing. The important eigenfunctions and complete eigenvalue spectra of the integral operator ${ensuremath{Gamma}}^{(2)}$, which has the 2-matrix as kernel, are reported here. The degeneracies of the eigenvalue spectra of ${ensuremath{Gamma}}^{(2)}$ and the properties of the natural geminals, the eigenfunctions of ${ensuremath{Gamma}}^{(2)}$, are discussed in detail. The multiplicities 1, 2, 3, 4, and 6 are the only nonaccidental degeneracies that can occur in the 4-electron problem when the one-electron basis of $ensuremath{Psi}$ is considered in symmetry-adapted spin-orbital form. The natural geminals can always be obtained in symmetry-adapted form and can be completely described by a set of numbers ($ensuremath{lambda},s,{m}_{s},{m}_{l},dots{}$), eigenvalues for the operators ${ensuremath{Gamma}}^{(2)},{S}^{2},{S}_{z},{L}_{z},dots{}$, respectively. The identity of the eigenvalue spectra and the equivalence of the two operators ${ensuremath{Gamma}}^{(p)}$ and ${ensuremath{Gamma}}^{(Nensuremath{-}p)}$ are demonstrated in the case where the one-electron basis of $ensuremath{Psi}$ is finite. The natural expansion of $ensuremath{Psi}$ is defined as the expansion in eigenfunctions of ${ensuremath{Gamma}}^{(p)}$ and ${ensuremath{Gamma}}^{(Nensuremath{-}p)}$. In the case $2p=N$, the phase of the two sets of eigenfunctions can be chosen as equal and the signs of the natural expansion coefficients are uniquely determined by the function $ensuremath{Psi}$." @default.
- W2022060214 created "2016-06-24" @default.
- W2022060214 creator A5019858099 @default.
- W2022060214 creator A5088181019 @default.
- W2022060214 date "1967-01-05" @default.
- W2022060214 modified "2023-10-06" @default.
- W2022060214 title "Reduced-Density-Matrix Theory: The 2-Matrix of Four-Electron Systems" @default.
- W2022060214 cites W1977025943 @default.
- W2022060214 cites W1978686822 @default.
- W2022060214 cites W1979278284 @default.
- W2022060214 cites W1982870629 @default.
- W2022060214 cites W1984006027 @default.
- W2022060214 cites W1984830779 @default.
- W2022060214 cites W1996108736 @default.
- W2022060214 cites W1996801212 @default.
- W2022060214 cites W2002673271 @default.
- W2022060214 cites W2003009527 @default.
- W2022060214 cites W2014090447 @default.
- W2022060214 cites W2014209007 @default.
- W2022060214 cites W2028381499 @default.
- W2022060214 cites W2044101843 @default.
- W2022060214 cites W2051588719 @default.
- W2022060214 cites W2055210156 @default.
- W2022060214 cites W2056887878 @default.
- W2022060214 cites W2060380227 @default.
- W2022060214 cites W2060442744 @default.
- W2022060214 cites W2064825904 @default.
- W2022060214 cites W2065475313 @default.
- W2022060214 cites W2074955401 @default.
- W2022060214 cites W2084135828 @default.
- W2022060214 cites W2110769624 @default.
- W2022060214 cites W2124547688 @default.
- W2022060214 cites W2149599588 @default.
- W2022060214 cites W2159449161 @default.
- W2022060214 cites W2170191150 @default.
- W2022060214 doi "https://doi.org/10.1103/physrev.153.61" @default.
- W2022060214 hasPublicationYear "1967" @default.
- W2022060214 type Work @default.
- W2022060214 sameAs 2022060214 @default.
- W2022060214 citedByCount "25" @default.
- W2022060214 countsByYear W20220602142012 @default.
- W2022060214 countsByYear W20220602142013 @default.
- W2022060214 countsByYear W20220602142014 @default.
- W2022060214 countsByYear W20220602142017 @default.
- W2022060214 countsByYear W20220602142018 @default.
- W2022060214 countsByYear W20220602142021 @default.
- W2022060214 crossrefType "journal-article" @default.
- W2022060214 hasAuthorship W2022060214A5019858099 @default.
- W2022060214 hasAuthorship W2022060214A5088181019 @default.
- W2022060214 hasConcept C106487976 @default.
- W2022060214 hasConcept C113603373 @default.
- W2022060214 hasConcept C121332964 @default.
- W2022060214 hasConcept C128803854 @default.
- W2022060214 hasConcept C147120987 @default.
- W2022060214 hasConcept C158693339 @default.
- W2022060214 hasConcept C185592680 @default.
- W2022060214 hasConcept C189394030 @default.
- W2022060214 hasConcept C37914503 @default.
- W2022060214 hasConcept C39739852 @default.
- W2022060214 hasConcept C43617362 @default.
- W2022060214 hasConcept C56911000 @default.
- W2022060214 hasConcept C62520636 @default.
- W2022060214 hasConcept C84114770 @default.
- W2022060214 hasConcept C93779851 @default.
- W2022060214 hasConceptScore W2022060214C106487976 @default.
- W2022060214 hasConceptScore W2022060214C113603373 @default.
- W2022060214 hasConceptScore W2022060214C121332964 @default.
- W2022060214 hasConceptScore W2022060214C128803854 @default.
- W2022060214 hasConceptScore W2022060214C147120987 @default.
- W2022060214 hasConceptScore W2022060214C158693339 @default.
- W2022060214 hasConceptScore W2022060214C185592680 @default.
- W2022060214 hasConceptScore W2022060214C189394030 @default.
- W2022060214 hasConceptScore W2022060214C37914503 @default.
- W2022060214 hasConceptScore W2022060214C39739852 @default.
- W2022060214 hasConceptScore W2022060214C43617362 @default.
- W2022060214 hasConceptScore W2022060214C56911000 @default.
- W2022060214 hasConceptScore W2022060214C62520636 @default.
- W2022060214 hasConceptScore W2022060214C84114770 @default.
- W2022060214 hasConceptScore W2022060214C93779851 @default.
- W2022060214 hasIssue "1" @default.
- W2022060214 hasLocation W20220602141 @default.
- W2022060214 hasOpenAccess W2022060214 @default.
- W2022060214 hasPrimaryLocation W20220602141 @default.
- W2022060214 hasRelatedWork W2002061998 @default.
- W2022060214 hasRelatedWork W2026517708 @default.
- W2022060214 hasRelatedWork W2060510481 @default.
- W2022060214 hasRelatedWork W2083375913 @default.
- W2022060214 hasRelatedWork W2245403906 @default.
- W2022060214 hasRelatedWork W2393344178 @default.
- W2022060214 hasRelatedWork W252781821 @default.
- W2022060214 hasRelatedWork W3132768077 @default.
- W2022060214 hasRelatedWork W4286382504 @default.
- W2022060214 hasRelatedWork W4386775247 @default.
- W2022060214 hasVolume "153" @default.
- W2022060214 isParatext "false" @default.
- W2022060214 isRetracted "false" @default.
- W2022060214 magId "2022060214" @default.
- W2022060214 workType "article" @default.