Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022078304> ?p ?o ?g. }
- W2022078304 endingPage "561" @default.
- W2022078304 startingPage "548" @default.
- W2022078304 abstract "Boreal forests are a critical component of the global carbon cycle, and timely monitoring allows for assessing forest cover change and its impacts on carbon dynamics. Earth observation data sets are an important source of information that allow for systematic monitoring of the entire biome. Landsat imagery, provided free of charge by the USGS Center for Earth Resources Observation and Science (EROS) enable consistent and timely forest cover updates. However, irregular image acquisition within parts of the boreal biome coupled with an absence of atmospherically corrected data hamper regional-scale monitoring efforts using Landsat imagery. A method of boreal forest cover and change mapping using Landsat imagery has been developed and tested within European Russia between circa year 2000 and 2005. The approach employs a multi-year compositing methodology adapted for incomplete annual data availability, within-region variation in growing season length and frequent cloud cover. Relative radiometric normalization and cloud/shadow data screening algorithms were employed to create seamless image composites with remaining cloud/shadow contamination of less than 0.5% of the total composite area. Supervised classification tree algorithms were applied to the time-sequential image composites to characterize forest cover and gross forest loss over the study period. Forest cover results when compared to independently-derived samples of Landsat data have high agreement (overall accuracy of 89%, Kappa of 0.78), and conform with official forest cover statistics of the Russian government. Gross forest cover loss regional-scale mapping results are comparable with individual Landsat image pair change detection (overall accuracy of 98%, Kappa of 0.71). The gross forest cover loss within European Russia 2000–2005 is estimated to be 2210 thousand hectares, and constitutes a 1.5% reduction of year 2000 forest cover. At the regional scale, the highest proportional forest cover loss is estimated for the most populated regions (Leningradskaya and Moskovskaya Oblast). Our results highlight the forest cover depletion around large industrial cities as the hotspot of forest cover change in European Russia." @default.
- W2022078304 created "2016-06-24" @default.
- W2022078304 creator A5006996458 @default.
- W2022078304 creator A5016861177 @default.
- W2022078304 creator A5074759135 @default.
- W2022078304 date "2011-02-15" @default.
- W2022078304 modified "2023-10-03" @default.
- W2022078304 title "Regional-scale boreal forest cover and change mapping using Landsat data composites for European Russia" @default.
- W2022078304 cites W1488288484 @default.
- W2022078304 cites W1520673459 @default.
- W2022078304 cites W185213264 @default.
- W2022078304 cites W1892201380 @default.
- W2022078304 cites W1963768209 @default.
- W2022078304 cites W1969518917 @default.
- W2022078304 cites W1974047452 @default.
- W2022078304 cites W1976499240 @default.
- W2022078304 cites W1978125380 @default.
- W2022078304 cites W1981827347 @default.
- W2022078304 cites W1984436329 @default.
- W2022078304 cites W1994508789 @default.
- W2022078304 cites W2014550147 @default.
- W2022078304 cites W2015135807 @default.
- W2022078304 cites W2021750641 @default.
- W2022078304 cites W2028928292 @default.
- W2022078304 cites W2029058476 @default.
- W2022078304 cites W2034813116 @default.
- W2022078304 cites W2038951852 @default.
- W2022078304 cites W2051691450 @default.
- W2022078304 cites W2061804983 @default.
- W2022078304 cites W2072577390 @default.
- W2022078304 cites W2077202991 @default.
- W2022078304 cites W2081399384 @default.
- W2022078304 cites W2081562328 @default.
- W2022078304 cites W2084192416 @default.
- W2022078304 cites W2084289470 @default.
- W2022078304 cites W2088603520 @default.
- W2022078304 cites W2094735994 @default.
- W2022078304 cites W2098059510 @default.
- W2022078304 cites W2099668548 @default.
- W2022078304 cites W2110826014 @default.
- W2022078304 cites W2116888634 @default.
- W2022078304 cites W2117900156 @default.
- W2022078304 cites W2119513445 @default.
- W2022078304 cites W2120264830 @default.
- W2022078304 cites W2121690928 @default.
- W2022078304 cites W2121853134 @default.
- W2022078304 cites W2124324874 @default.
- W2022078304 cites W2133109741 @default.
- W2022078304 cites W2136369781 @default.
- W2022078304 cites W2137260419 @default.
- W2022078304 cites W2138973222 @default.
- W2022078304 cites W2143010534 @default.
- W2022078304 cites W2145270887 @default.
- W2022078304 cites W2145493127 @default.
- W2022078304 cites W2147480066 @default.
- W2022078304 cites W2151456308 @default.
- W2022078304 cites W2158031389 @default.
- W2022078304 cites W2158854610 @default.
- W2022078304 cites W2161570034 @default.
- W2022078304 cites W2166251851 @default.
- W2022078304 cites W2181552524 @default.
- W2022078304 cites W2184911602 @default.
- W2022078304 cites W2912934387 @default.
- W2022078304 cites W2915157699 @default.
- W2022078304 cites W3016403127 @default.
- W2022078304 cites W3085162807 @default.
- W2022078304 cites W383855796 @default.
- W2022078304 cites W2134950486 @default.
- W2022078304 doi "https://doi.org/10.1016/j.rse.2010.10.001" @default.
- W2022078304 hasPublicationYear "2011" @default.
- W2022078304 type Work @default.
- W2022078304 sameAs 2022078304 @default.
- W2022078304 citedByCount "160" @default.
- W2022078304 countsByYear W20220783042012 @default.
- W2022078304 countsByYear W20220783042013 @default.
- W2022078304 countsByYear W20220783042014 @default.
- W2022078304 countsByYear W20220783042015 @default.
- W2022078304 countsByYear W20220783042016 @default.
- W2022078304 countsByYear W20220783042017 @default.
- W2022078304 countsByYear W20220783042018 @default.
- W2022078304 countsByYear W20220783042019 @default.
- W2022078304 countsByYear W20220783042020 @default.
- W2022078304 countsByYear W20220783042021 @default.
- W2022078304 countsByYear W20220783042022 @default.
- W2022078304 countsByYear W20220783042023 @default.
- W2022078304 crossrefType "journal-article" @default.
- W2022078304 hasAuthorship W2022078304A5006996458 @default.
- W2022078304 hasAuthorship W2022078304A5016861177 @default.
- W2022078304 hasAuthorship W2022078304A5074759135 @default.
- W2022078304 hasConcept C100970517 @default.
- W2022078304 hasConcept C110872660 @default.
- W2022078304 hasConcept C111919701 @default.
- W2022078304 hasConcept C147103442 @default.
- W2022078304 hasConcept C18903297 @default.
- W2022078304 hasConcept C203595873 @default.
- W2022078304 hasConcept C205649164 @default.
- W2022078304 hasConcept C206887242 @default.
- W2022078304 hasConcept C2778755073 @default.