Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022086975> ?p ?o ?g. }
- W2022086975 endingPage "2297" @default.
- W2022086975 startingPage "2274" @default.
- W2022086975 abstract "Dimensionality reduction has become a ubiquitous preprocessing step in many applications. Linear discriminant analysis (LDA) has been known to be one of the most optimal dimensionality reduction methods for classification. However, a main disadvantage of LDA is that the so-called total scatter matrix must be nonsingular. But, in many applications, the scatter matrices can be singular since the data points are from a very high-dimensional space, and thus usually the number of the data samples is smaller than the data dimension. This is known as the undersampled problem. Many generalized LDA methods have been proposed in the past to overcome this singularity problem. There is a commonality for these generalized LDA methods; that is, they compute the optimal linear transformations by computing some eigen-decompositions and involving some matrix inversions. However, the eigen-decomposition is computationally expensive, and the involvement of matrix inverses may lead to the methods not numerically stable if the associated matrices are ill-conditioned. Hence, many existing LDA methods have high computational cost and have potential numerical instability problems. In this paper we present a new orthogonal LDA method for the undersampled problem. The main features of our proposed LDA method include the following: (i) the optimal transformation matrix is obtained easily by only orthogonal transformations without computing any eigen-decomposition and matrix inverse, and, consequently, our LDA method is inverse-free and numerically stable; (ii) our LDA method is implemented by using several QR factorizations and is a fast one. The effectiveness of our new method is illustrated by some real-world data sets." @default.
- W2022086975 created "2016-06-24" @default.
- W2022086975 creator A5041423958 @default.
- W2022086975 creator A5044933432 @default.
- W2022086975 date "2010-01-01" @default.
- W2022086975 modified "2023-10-18" @default.
- W2022086975 title "A New and Fast Orthogonal Linear Discriminant Analysis on Undersampled Problems" @default.
- W2022086975 cites W1535854520 @default.
- W2022086975 cites W1727290854 @default.
- W2022086975 cites W1764447967 @default.
- W2022086975 cites W1966701961 @default.
- W2022086975 cites W1967313494 @default.
- W2022086975 cites W1977271127 @default.
- W2022086975 cites W1978286881 @default.
- W2022086975 cites W1985852691 @default.
- W2022086975 cites W1991390949 @default.
- W2022086975 cites W2005999980 @default.
- W2022086975 cites W2009596443 @default.
- W2022086975 cites W2011058684 @default.
- W2022086975 cites W2012352340 @default.
- W2022086975 cites W2017530772 @default.
- W2022086975 cites W2021470860 @default.
- W2022086975 cites W2022336648 @default.
- W2022086975 cites W2023717039 @default.
- W2022086975 cites W2027077102 @default.
- W2022086975 cites W2054639298 @default.
- W2022086975 cites W2072773380 @default.
- W2022086975 cites W2080051508 @default.
- W2022086975 cites W2088900896 @default.
- W2022086975 cites W2104294146 @default.
- W2022086975 cites W2115358726 @default.
- W2022086975 cites W2123921160 @default.
- W2022086975 cites W2146820706 @default.
- W2022086975 cites W2147246240 @default.
- W2022086975 cites W2155423555 @default.
- W2022086975 cites W2161419360 @default.
- W2022086975 cites W2171347282 @default.
- W2022086975 cites W4238240379 @default.
- W2022086975 doi "https://doi.org/10.1137/090766772" @default.
- W2022086975 hasPublicationYear "2010" @default.
- W2022086975 type Work @default.
- W2022086975 sameAs 2022086975 @default.
- W2022086975 citedByCount "17" @default.
- W2022086975 countsByYear W20220869752012 @default.
- W2022086975 countsByYear W20220869752013 @default.
- W2022086975 countsByYear W20220869752014 @default.
- W2022086975 countsByYear W20220869752015 @default.
- W2022086975 countsByYear W20220869752016 @default.
- W2022086975 countsByYear W20220869752018 @default.
- W2022086975 countsByYear W20220869752019 @default.
- W2022086975 countsByYear W20220869752023 @default.
- W2022086975 crossrefType "journal-article" @default.
- W2022086975 hasAuthorship W2022086975A5041423958 @default.
- W2022086975 hasAuthorship W2022086975A5044933432 @default.
- W2022086975 hasConcept C105795698 @default.
- W2022086975 hasConcept C106487976 @default.
- W2022086975 hasConcept C111030470 @default.
- W2022086975 hasConcept C11413529 @default.
- W2022086975 hasConcept C121332964 @default.
- W2022086975 hasConcept C126255220 @default.
- W2022086975 hasConcept C154945302 @default.
- W2022086975 hasConcept C158693339 @default.
- W2022086975 hasConcept C159985019 @default.
- W2022086975 hasConcept C169756996 @default.
- W2022086975 hasConcept C188060507 @default.
- W2022086975 hasConcept C192562407 @default.
- W2022086975 hasConcept C202444582 @default.
- W2022086975 hasConcept C22789450 @default.
- W2022086975 hasConcept C28826006 @default.
- W2022086975 hasConcept C33676613 @default.
- W2022086975 hasConcept C33923547 @default.
- W2022086975 hasConcept C41008148 @default.
- W2022086975 hasConcept C42355184 @default.
- W2022086975 hasConcept C54940322 @default.
- W2022086975 hasConcept C62520636 @default.
- W2022086975 hasConcept C69738355 @default.
- W2022086975 hasConcept C70518039 @default.
- W2022086975 hasConceptScore W2022086975C105795698 @default.
- W2022086975 hasConceptScore W2022086975C106487976 @default.
- W2022086975 hasConceptScore W2022086975C111030470 @default.
- W2022086975 hasConceptScore W2022086975C11413529 @default.
- W2022086975 hasConceptScore W2022086975C121332964 @default.
- W2022086975 hasConceptScore W2022086975C126255220 @default.
- W2022086975 hasConceptScore W2022086975C154945302 @default.
- W2022086975 hasConceptScore W2022086975C158693339 @default.
- W2022086975 hasConceptScore W2022086975C159985019 @default.
- W2022086975 hasConceptScore W2022086975C169756996 @default.
- W2022086975 hasConceptScore W2022086975C188060507 @default.
- W2022086975 hasConceptScore W2022086975C192562407 @default.
- W2022086975 hasConceptScore W2022086975C202444582 @default.
- W2022086975 hasConceptScore W2022086975C22789450 @default.
- W2022086975 hasConceptScore W2022086975C28826006 @default.
- W2022086975 hasConceptScore W2022086975C33676613 @default.
- W2022086975 hasConceptScore W2022086975C33923547 @default.
- W2022086975 hasConceptScore W2022086975C41008148 @default.
- W2022086975 hasConceptScore W2022086975C42355184 @default.
- W2022086975 hasConceptScore W2022086975C54940322 @default.
- W2022086975 hasConceptScore W2022086975C62520636 @default.