Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022091791> ?p ?o ?g. }
- W2022091791 endingPage "151" @default.
- W2022091791 startingPage "140" @default.
- W2022091791 abstract "Orbital cycles with 100 kyr and/or 41 kyr periods, detected in some sedimentary normalized remanence (relative paleointensity) records by power spectral analysis or wavelet analysis, have been attributed either to orbital forcing of the geodynamo, or to lithologic contamination. In this study, local wavelet power spectra (LWPS) with significance tests have been calculated for seven relative paleointensity (RPI) records from different regions of the world. The results indicate that orbital periods (100 kyr and/or 41 kyr) are significant in some RPI records during certain time intervals, and are not significant in others. Time intervals where orbital periods are significant are not consistent among the RPI records, implying that orbital periods in these RPI records may not have a common origin such as orbital forcing on the geodynamo. Cross-wavelet power spectra (|XWT|) and squared wavelet coherence (WTC) between RPI records and orbital parameters further indicate that common power exists at orbital periods but is not significantly coherent, and exhibits variable phase relationships, implying that orbital periods in RPI records are not caused directly by orbital forcing. Similar analyses for RPI records and benthic oxygen isotope records from the same sites show significant coherence and constant in-phase relationships during time intervals where orbital periods were significant in the RPI records, indicating that orbital periods in the RPI records are most likely due to climatic ‘contamination’. Although common power exists at orbital periods for RPI records and their normalizers with significant coherence during certain time intervals, phase relationships imply that ‘contamination’ (at orbital periods) is not directly due to the normalizers. Orbital periods are also significant in the NRM intensity records, and ‘contamination’ in RPI records can be attributed to incomplete normalization of the NRM records. Further tests indicate that ‘contamination’ is apparently not directly related to physical properties such as density or carbonate content, or to the grain size proxy κARM/κ. However, WTC between RPI records and the grain size proxy ARM/IRM implies that ARM/IRM does reflect the ‘contamination’ in some RPI records. It appears that orbital periods were introduced into the NRM records (and have not been normalized when calculating RPI records) through magnetite grain size variations reflected in the ARM/IRM grain size proxy. The orbital power in ARM/IRM for some North Atlantic sites is probably derived from bottom-current velocity variations that are orbitally modulated and are related to the vigor of thermohaline circulation and the production of North Atlantic Deep Water (NADW). In the case of ODP Site 983, the orbital power in RPI appears to exhibit a shift from 41-kyr to 100-kyr period at the mid-Pleistocene climate transition (∼750 ka), reinforcing the climatic origin of these orbital periods. RPI records from the Atlantic and Pacific oceans, and RPI records with orbital periods eliminated by band-pass filters, are highly comparable with each other in the time domain, and are coherent and in-phase in time-frequency space, especially at non-orbital periods, indicating that ‘contamination’, although present (at orbital periods) is not debilitating to these RPI records as a global signal that is primarily of geomagnetic origin." @default.
- W2022091791 created "2016-06-24" @default.
- W2022091791 creator A5054889888 @default.
- W2022091791 creator A5059470202 @default.
- W2022091791 date "2008-08-01" @default.
- W2022091791 modified "2023-09-30" @default.
- W2022091791 title "Origin of orbital periods in the sedimentary relative paleointensity records" @default.
- W2022091791 cites W1526762037 @default.
- W2022091791 cites W1539038388 @default.
- W2022091791 cites W1556482552 @default.
- W2022091791 cites W1573423791 @default.
- W2022091791 cites W1585602643 @default.
- W2022091791 cites W1588227642 @default.
- W2022091791 cites W1591069900 @default.
- W2022091791 cites W1631559605 @default.
- W2022091791 cites W1652755428 @default.
- W2022091791 cites W1823339086 @default.
- W2022091791 cites W1963518247 @default.
- W2022091791 cites W1963567343 @default.
- W2022091791 cites W1975468427 @default.
- W2022091791 cites W1978843152 @default.
- W2022091791 cites W1984418398 @default.
- W2022091791 cites W1993516320 @default.
- W2022091791 cites W1995306221 @default.
- W2022091791 cites W1995471679 @default.
- W2022091791 cites W1996547581 @default.
- W2022091791 cites W1997429305 @default.
- W2022091791 cites W1997946697 @default.
- W2022091791 cites W1998260626 @default.
- W2022091791 cites W2002061380 @default.
- W2022091791 cites W2009023034 @default.
- W2022091791 cites W2010349115 @default.
- W2022091791 cites W2012935575 @default.
- W2022091791 cites W2014228928 @default.
- W2022091791 cites W2014607005 @default.
- W2022091791 cites W2014644667 @default.
- W2022091791 cites W2016784063 @default.
- W2022091791 cites W2018285375 @default.
- W2022091791 cites W2020438951 @default.
- W2022091791 cites W2021108822 @default.
- W2022091791 cites W2025649165 @default.
- W2022091791 cites W2027886507 @default.
- W2022091791 cites W2029142498 @default.
- W2022091791 cites W2029566908 @default.
- W2022091791 cites W2033971029 @default.
- W2022091791 cites W2034139177 @default.
- W2022091791 cites W2038936349 @default.
- W2022091791 cites W2042662463 @default.
- W2022091791 cites W2046511317 @default.
- W2022091791 cites W2046931686 @default.
- W2022091791 cites W2047566574 @default.
- W2022091791 cites W2047957893 @default.
- W2022091791 cites W2048891927 @default.
- W2022091791 cites W2056496467 @default.
- W2022091791 cites W2061166935 @default.
- W2022091791 cites W2061631947 @default.
- W2022091791 cites W2062761864 @default.
- W2022091791 cites W2068643461 @default.
- W2022091791 cites W2069150501 @default.
- W2022091791 cites W2072135736 @default.
- W2022091791 cites W2073724146 @default.
- W2022091791 cites W2078404914 @default.
- W2022091791 cites W2083121782 @default.
- W2022091791 cites W2086461587 @default.
- W2022091791 cites W2090263774 @default.
- W2022091791 cites W2095229820 @default.
- W2022091791 cites W2096716153 @default.
- W2022091791 cites W2106032841 @default.
- W2022091791 cites W2113243658 @default.
- W2022091791 cites W2118341878 @default.
- W2022091791 cites W2122031834 @default.
- W2022091791 cites W2124459709 @default.
- W2022091791 cites W2129506181 @default.
- W2022091791 cites W2135326211 @default.
- W2022091791 cites W2138477804 @default.
- W2022091791 cites W2140477756 @default.
- W2022091791 cites W2141505021 @default.
- W2022091791 cites W2143060378 @default.
- W2022091791 cites W2149571143 @default.
- W2022091791 cites W2149617456 @default.
- W2022091791 cites W2150450312 @default.
- W2022091791 cites W2150569089 @default.
- W2022091791 cites W2161593802 @default.
- W2022091791 cites W2162052794 @default.
- W2022091791 cites W2163518929 @default.
- W2022091791 cites W2164044408 @default.
- W2022091791 cites W2165621032 @default.
- W2022091791 cites W2173306896 @default.
- W2022091791 cites W4306293736 @default.
- W2022091791 cites W1607668172 @default.
- W2022091791 doi "https://doi.org/10.1016/j.pepi.2008.07.017" @default.
- W2022091791 hasPublicationYear "2008" @default.
- W2022091791 type Work @default.
- W2022091791 sameAs 2022091791 @default.
- W2022091791 citedByCount "22" @default.
- W2022091791 countsByYear W20220917912013 @default.
- W2022091791 countsByYear W20220917912014 @default.
- W2022091791 countsByYear W20220917912015 @default.