Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022095969> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W2022095969 abstract "Terahertz pulsed imaging (TPI) is a powerful tool for non-destructive quantification of pharmaceutical tablet coatings. In this paper, we present a Neural Network (NN) based method for extracting the coating thickness from the FFT-amplitude of the measured terahertz waveform. We demonstrate that the NN-based frequency domain method outperforms the standard “peak-finding” time-domain method, in terms of quantifying thinner coating thickness, although a learning set of data is necessary." @default.
- W2022095969 created "2016-06-24" @default.
- W2022095969 creator A5011751163 @default.
- W2022095969 creator A5039668026 @default.
- W2022095969 creator A5056476207 @default.
- W2022095969 creator A5058455344 @default.
- W2022095969 creator A5066943125 @default.
- W2022095969 creator A5073713299 @default.
- W2022095969 date "2010-09-01" @default.
- W2022095969 modified "2023-10-18" @default.
- W2022095969 title "Neural Network-based non-destructive quantification of thin coating by terahertz pulsed imaging in the frequency domain" @default.
- W2022095969 cites W1985048212 @default.
- W2022095969 cites W2007731046 @default.
- W2022095969 cites W2014227913 @default.
- W2022095969 cites W2116369532 @default.
- W2022095969 cites W2116919541 @default.
- W2022095969 cites W2159533969 @default.
- W2022095969 cites W2168672956 @default.
- W2022095969 cites W2169424979 @default.
- W2022095969 doi "https://doi.org/10.1109/icimw.2010.5612560" @default.
- W2022095969 hasPublicationYear "2010" @default.
- W2022095969 type Work @default.
- W2022095969 sameAs 2022095969 @default.
- W2022095969 citedByCount "1" @default.
- W2022095969 countsByYear W20220959692021 @default.
- W2022095969 crossrefType "proceedings-article" @default.
- W2022095969 hasAuthorship W2022095969A5011751163 @default.
- W2022095969 hasAuthorship W2022095969A5039668026 @default.
- W2022095969 hasAuthorship W2022095969A5056476207 @default.
- W2022095969 hasAuthorship W2022095969A5058455344 @default.
- W2022095969 hasAuthorship W2022095969A5066943125 @default.
- W2022095969 hasAuthorship W2022095969A5073713299 @default.
- W2022095969 hasConcept C107816215 @default.
- W2022095969 hasConcept C154945302 @default.
- W2022095969 hasConcept C19118579 @default.
- W2022095969 hasConcept C192562407 @default.
- W2022095969 hasConcept C31972630 @default.
- W2022095969 hasConcept C41008148 @default.
- W2022095969 hasConcept C49040817 @default.
- W2022095969 hasConcept C50644808 @default.
- W2022095969 hasConceptScore W2022095969C107816215 @default.
- W2022095969 hasConceptScore W2022095969C154945302 @default.
- W2022095969 hasConceptScore W2022095969C19118579 @default.
- W2022095969 hasConceptScore W2022095969C192562407 @default.
- W2022095969 hasConceptScore W2022095969C31972630 @default.
- W2022095969 hasConceptScore W2022095969C41008148 @default.
- W2022095969 hasConceptScore W2022095969C49040817 @default.
- W2022095969 hasConceptScore W2022095969C50644808 @default.
- W2022095969 hasLocation W20220959691 @default.
- W2022095969 hasOpenAccess W2022095969 @default.
- W2022095969 hasPrimaryLocation W20220959691 @default.
- W2022095969 hasRelatedWork W1551465958 @default.
- W2022095969 hasRelatedWork W2031435601 @default.
- W2022095969 hasRelatedWork W2042904581 @default.
- W2022095969 hasRelatedWork W2399397734 @default.
- W2022095969 hasRelatedWork W2761553826 @default.
- W2022095969 hasRelatedWork W2763973668 @default.
- W2022095969 hasRelatedWork W2790245118 @default.
- W2022095969 hasRelatedWork W2899084033 @default.
- W2022095969 hasRelatedWork W2902546961 @default.
- W2022095969 hasRelatedWork W2246737941 @default.
- W2022095969 isParatext "false" @default.
- W2022095969 isRetracted "false" @default.
- W2022095969 magId "2022095969" @default.
- W2022095969 workType "article" @default.